RELATED TITLES FROM FUNCTIONAL FOOD CENTER INC./ FOOD SCIENCE PUBLISHER

Functional Foods for Cardiovascular Diseases, Volume 1, Functional Foods Can Help Reduce the Risks of Cardiovascular Diseases
Library of Congress Control Number: 2005902635
Product Dimensions: 10.7 x 8.1 x 0.8 inches.

Functional Foods for Chronic Diseases, Volume 2, The Modern Day Cure without the Side Effects of Traditional Treatment
Library of Congress Control Number: 2006903730
Product Dimensions: 10.6 x 8.4 x 0.7 inches.

Functional Foods for Chronic Diseases, Volume 3, Advances in the Development of Functional Foods
Library of Congress Control Number: 2007909262
Product Dimensions: 10 x 8 x 0.7 inches

Functional Foods for Chronic Diseases, Volume 4, Obesity, Diabetes, Cardiovascular Disorders and AIDS
Library of Congress Control Number: 2009906605
Product Dimensions: 9 x 6 x 0.8 inches
FUNCTIONAL FOODS FOR CHRONIC DISEASES

VOLUME 5

Diabetes and Related Diseases

Edited By
Danik M. Martirosyan, PhD and Nicola Abate, MD
ACKNOWLEDGMENTS

This book would not have seen the light of day if it weren’t for the contributions of numerous scientists from various parts of the world, including the participants of the 6th International Conference “Functional Foods for Chronic Diseases: Diabetes and Related Diseases” which was held at Texas Woman’s University in Denton, Texas, USA from December 4–5, 2009.

I would like to thank Dr. Kay Clayton Provost, the Vice President of Academic Affairs, to Professor Jimmy Ishee from Dean College of Health Sciences, as well as Dr. Chandan Prasad, Chair of the Department of Nutrition and Food Sciences from Texas Woman's University, for their assistance in coordinating our conference. I would also like to thank all those that helped the annual international conference in the series: “Functional Foods for the Prevention and Management of Chronic Diseases” become a reality, and all others who, in different capacities, helped this project become an international success.

I wish to thank the countless experts for their professional advice and review of manuscripts for this publication. Among the reviewers, I would like to specifically mention the very helpful and critical advise of Dr. Eloy Rodriguez, (MD, PhD), Francesco Carluccio, (MD, PhD), Bhuvnesh kumar Sharma, (MD, PhD), Momin Ali (PhD), Vinod Kumar Lavaniya (MD, PhD), Christine Houghton (PhD), Benny Tan (MD, PhD), Tienush Rassaf, MD, PhD and Guan Teng (PhD), Florentina Maria Dewi Puspitasari Tirtaningtyas Gunawan-Putri(PhD).

I thank the organizations (more than 80 academic, medical and scientific organizations) that permitted the authors to work on this project. Lastly, the compilation of this book Functional Food for Chronic Diseases, Volume 5 was a team effort and I would like to send my heartfelt thanks to all the contributors for sending their articles.
CONTENTS
INTRODUCTION 14

PART ONE
CLINICAL TRIALS AND HUMAN STUDIES 17

1. Probiotic Survivability, Sensory Property and Stability of Symbiotic Drinkable Yogurt 18
 Sumangala Gokavi, Helen Walsh, Frank Lee, Montserrat Almena-Aliste, Mingruo Guo (USA)
 1.1 Introduction
 1.2 Materials and Methods
 1.3 Results and Discussion
 1.4 Conclusion
 1.5 References

2. The Prevalence of Insulin Resistance and Related Metabolic Features in Aruba: Revelations, Implications, and Hope 29
 Carlos Manuel Viana and Ernesto Rodríguez (Aruba, Dutch West Indies)
 2.1 Abstract
 2.2 Results
 2.3 Discussion
 2.4 Conclusions
 2.5 References

3. Pathya (Wholesome) and Apathya (Unwholesome) Foods in Metabolic Disorders (Diabetes) V.S.R. to Ayurveda 59
 Ala Narayana, G.P. Prasad and K. Bharathi (India)
 3.1 Introduction
 3.2 Materials and Methods
 3.3 Results and Discussion
 3.4 Conclusion
 3.5 References

4. The Influence of Diet Therapy with Amaranth and Sunflower Oils
to the Immunoreactivity of Patients with Type II Diabetes 78
Valinkina A.P., Miroshnichenko L.A., Zoloedov V.I., Kulakova S.N., and Martirosyan D.M. (Russia-USA)

4.1 Abstract
4.2 Background
4.3 Materials and Methods
4.4 Results and Discussion
4.5 Conclusions
4.6 References

5. Hypertension in Relation to Anthropometry of Selected Hypertensives from Palampur Region of Kangra District (Himachal Pradesh, India) 91
Sonika B. and Malhotra S. R. (India)

5.1 Introduction
5.2 Methodology
5.3 Results and Discussion
5.4 Suggestions and Recommendations
5.5 References

6. Multiparity and High Prevalence of the Metabolic Syndrome Using the International Diabetes Federation Criteria in Omani Arab Women 113
Sulayma A Albarwani, Riad A Bayoumi, Deepali Jaju, Syed G Rizvi, Saeed A S Al-Yahyae, Saleh Al-Hadabi, Anthony G Comuzzie and Mohammed O Hassan (Oman)

6.1 Abstract
6.2 Introduction
6.3 Materials and Methods
6.4 Results and Discussion
6.5 Conclusion
6.6 References

7. Role of Ayurvedic Dietetics in Cardiovascular Disorders wsr to Lowering Homocysteine Level 127
Ala Narayana (India)
7.1 Introduction
7.2 Ancient Description of Heart
7.3 Homocysteine
7.4 Material and Methods
7.5 Discussion
7.6 Conclusions
7.7 Bibliography

8. Germinating Seeds: Sprouts as Effective Blood Sugar Regulators

Manju Pathak (India)

8.1 Abstract
8.2 Introduction
8.3 Materials and Methods
8.4 Results and Discussion
8.5 Conclusion
8.6 References

PART TWO
EXPERIMENTAL STUDIES

9. Antioxidant Capacity of UHT Cow Milk with Vitamin Addition

Jelena Zivkovic, Slavica Sunaric, Natasa Trutic, Radmila Pavlovic, Gordana Kocic, Goran Nikolic, Tatjana Jovanovic (Serbia)

9.1 Summary
9.2 Introduction
9.3 Materials and Methods
9.4 Results and Discussion
9.5 Conclusions
9.6 References

10. Role of Antioxidants on Fern (Pteridium Aquilinum) Induced Oxidative Stress in Urinary Bladder

Renu Bala, R.K. Dawra and Sonika (India)

10.1 Abstract
10.2 Introduction
10.3 Materials and Methods
10.4 Results and Discussion
11. The Effect of Horsetail (Equisetum Arvense) and Hydrochlorothiazide on Urine Excretion
Jurga Bernatoniene, Genuvaite Civinskiene, Arunas Savickas, Rimantas Klimas, Rimantas Peciura and Danik M. Martirosyan
(Lithuania-USA)

11.1 Abstract
11.2 Introduction
11.3 Materials and Methods
11.4 Results and Discussion
11.5 Conclusions
11.6 References

12. Chemical Profile of Selected Fruit Extracts Used for Diabetes Control
Oluwatoyin Okafor, Kemi Daramola, Yeside Pikuda, Oluwatoyin Oke, Benedict Omosebi, Gloria Elemo, Augusta Ozumba, Oluwatoyin Oluwole, Sulola Ojeniyi, Elizabeth Fasheun, Akinwumi Oyebanji and Ochuko Erukainure (Nigeria)

12.1 Introduction
12.2 Materials and Methods
12.3 Results and Discussion
12.4 Conclusions
12.5 Acknowledgement
12.6 References

13. Development of Honey and Garlic Mix (Madhu Mix Lasuna) Using Advance Drum Drying Processing
P. K. Perera, K. K. D. S. Ranaweera and A. Bamunuarachchi (China - Sri Lanka)

13.1 Introduction
13.2 Methods, Materials and Equipment
13.3 Results and Discussion
13.4 Conclusion
13.5 References

14. Formulation and Optimization of Capsules Containing a Mixture of Dry Herbal Extracts with Sedative Properties
of the Nervous System 215
Arunas Savickas, Giedre Kasparaviciene, Kristina Ramanauskiene, Zenona Kalveniene, Asta Marija Inkeniene and Danik M. Martirosyan (Lithuania-USA)

14.1 Abstract
14.2 Introduction
14.3 Experimental Parts
14.4 Results and Discussion
14.5 Conclusion
14.6 References

15. Therapeutic Enrichment of Whey Fruit Juice Beverage by Lycopene as a Nutraceutical 234
Pawar V. N. and Deothankar H. M. (India)

15.1 Abstract
15.2 Introduction
15.3 Experimental Details
15.4 Results and Discussion
15.5 Conclusion
15.6 References

PART THREE
REVIEWS 245

16. Cow Milk as a Prospective Functional Food Product for Type II Diabetes 246

16.1 Insulin resistance, obesity and type 2 diabetes
16.2 Oxidative and metabolic stress as factors contributing to development of type 2 diabetes
16.3 Glucose and free fatty acids in β-cell function and type 2 diabetes development
16.4 Glucose, advanced glycation end products (AGEs) and type 2 diabetes
16.5 Dietary Lactose as a risk factor for diabetes and CHD
16.6 Incidence of CHD disease and lactose intolerance
16.7 Omega (n-3) fatty acids and development of CHD
16.8 Energy production and its relation to metabolic stress
16.9 Inflammatory molecules and type 2 diabetes
16.10 Milk proteins and the risk of diabetes
16.11 Homocysteinemia and CHD risk
16.12 Vitamin D, calcium and magnesium
16.13 Conclusion
16.14 References

17. Inorganic Nitrite and Nitrate are Bioactive Food Components Conferring Nitric Oxide Activity in Vivo 277
Harsha K. Garg and Nathan S. Bryan (USA)

17.1 Atmospheric Nitrogen Cycle
17.2 NO generation without NO synthase
17.3 Nitrite in NO Biology
17.4 Organic nitrates
17.5 Nitrite and Nitrate in Traditional Chinese Medicines
17.6 Nitrite and Nitrate are naturally occurring in almost all foods
17.7 Interactions between nitrite and other dietary compounds
17.8 Nutritional Epidemiology of Nitrite and Nitrate
17.9 References

18. Systemic Inflammation in Obesity and Diabetes: Why and How to Manage 298
Joel Faintuch, Nino Behar, Hermes V. Barbeiro, Denise F Barbeiro and Ivan Ceconello (Brazil)

18.1 Inflammation in chronic noninfectious diseases
18.2 Classic inflammation
18.3 Histologic dimension
18.4 Cellular and molecular expression
18.5 Clinical importance of C-reactive protein
18.6 Prognostic implications of systemic inflammation
18.7 Inflammation in obesity and diabetes
18.8 Diabetes and systemic inflammation
18.9 Insulin resistance and cardiovascular risk factors
18.10 Pharmacologic treatment of inflammation
18.11 Functional foods
18.12 Flaxseed oil and powder
18.13 Closing remarks
18.14 References
19. Special Sorghums for Health Foods
Linda Dykes and Lloyd Rooney (USA)

19.1 Introduction
19.2 Sorghum Genetics Relevant to phenolics and Tannins
19.3 Sorghum Phenolics
19.4 Contribution of Sorghum Phenolics to Health
19.5 References

20. Flaxseed Supplementation for Diabetes, Obesity and Atherosclerosis
Joel Faintuch, Nino Behar, Hermes V. Barbeiro, Denise F Barbeiro, Ivan Ceconello (USA)

20.1 Introduction
20.2 Omega-3 fatty acids
20.3 Pharmacologic changes
20.4 Response in diabetic subjects
20.5 Omega 3 supplementation
20.6 Flaxseed consumption
20.7 Interest of vegetable omega-3
20.8 Biochemical pathways of ALA
20.9 Clinical experience with flaxseed
20.10 Closing remarks
20.11 References

21. Is Metabolic Syndrome is Brain Disorder?
Undurti N Das (USA)

21.1 Abstract
21.2 Introduction
21.3 Development of appetite regulatory centers during perinatal period
21.4 Ventromedial hypothalamus and the metabolic syndrome
21.5 Insulin and insulin receptors in brain and its relevance to type 2 diabetes mellitus
21.6 BDNF and metabolic syndrome
21.7 PUFAs in brain growth and development
21.8 Weight loss due to gastric bypass is related to changes in hypothalamic neurotransmitters
21.9 Conclusions and therapeutic implications
21.10 References

22. Traditional Functional Foods for the Chemoprevention of Chronic Diseases: Phytopharmacological Concepts in Food Synergy

Cedric B. Baker (USA)

22.1 Introduction
22.2 The Ethnopharmacology and Medical Ethnobotany of Food
22.3 The Ethnopharmacology of Food
22.4 The Medical Ethnobotany of Food
22.5 The Ethnopharmacological Dietetics, Diets, and Functional Foods
22.6 The medical Ethnobotany of Foods, Genes, and Cultures: Ethnonutrigenomics
22.7 Ethnopharmacy
22.8 Functional foods: Nutrigenomics and Chemoprevention
22.9 Food Components and Food Synergy
22.10 Food Synergy
22.11 Food Synergy in Traditional Functional foods
22.12 Conclusions
22.13 References

SUBJECT INDEX

ARTICLE REVIEWER’S LIST
INTRODUCTION

Chronic illness affects the population worldwide. Data from the World Health Organization shows that chronic disease is also the major cause of premature death around the world. Furthermore, chronic disease is the leading cause of death and disability in the United States. As described by the Centers for Disease Control, it accounts for 70% of total deaths in the US, which is an astounding 1.7 million each year. Chronic disease – such as heart disease, cancer, and diabetes – is the leading cause of death and disability in the United States. Studies have shown that diabetes continues to be the leading cause of kidney failure, nontraumatic lower-extremity amputations, and blindness among adults, ages 20-74. More specifically, diabetes is a chronic disease that requires long-term medical attention to limit the development of its devastating complications as well as for management when these effects do occur. Regardless of treatment, the management of diabetes through traditional therapy over a period of time will almost surely bring about side effects and serious complications. For this reason, there is a big interest in functional foods that could potentially help in the prevention and management of diabetes as well as for diabetes related complications, such as obesity and cardiovascular disorders, without side effects. Functional foods might have a particularly high impact for prevention and control of diabetes for which, the link between nutrition and diseases is established.

This book not only introduces new functional foods for the management of diabetes, but also shows the investigations and research that have led to their creation. Also, the book preserves the numerous ideas and contributions made in this thriving field, presenting the current progress and evolution that will undoubtedly change the lives of millions.

The first part of this book provides clinical studies on the prevention and management of diabetes via functional foods. The second part focuses on the experimental aspects of the creation of functional ingredients and functional foods for diabetes and diabetes related diseases, such as obesity and cardiovascular diseases, including chapters on the investigations of bioactive compounds. The final part of the book is composed of reviews about functional foods, functional ingredients and bioactive compounds in controlling diabetes.

This scientific work was written by leading authorities from different parts of the world, including the participants in the 6th
International Conference “Functional Foods for Chronic Diseases: Diabetes and Related Diseases” that was held at Texas Woman’s University, Denton, Texas, USA on December 4-5, 2009

This book is beneficial to nutritionists, food scientists and technologists, scientists working in the field of diabetes, entrepreneurs who are designing and marketing new functional foods, as well as public health professionals and physicians. Furthermore, it provides significant information for people interested in maintaining and preserving health and therefore, a longer, happier life.

Danik M. Martirosyan, PhD

Founder and President of Functional Food Center Inc.
Hon. Clinical Associate Professor in Food and Nutrition Science Department at Texas Woman’s University
PART ONE

CLINICAL TRIALS AND HUMAN STUDIES
SUBJECT INDEX

A

<table>
<thead>
<tr>
<th>Term</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkaloid</td>
<td>188-201, 216, 368, 370</td>
</tr>
<tr>
<td>Alpha-linolenic acid</td>
<td>298, 305, 321, 323, 329</td>
</tr>
<tr>
<td>α-tocopherol</td>
<td>177, 179, 182, 183</td>
</tr>
<tr>
<td>Amaranth oil</td>
<td>78-88</td>
</tr>
<tr>
<td>Anthropometry</td>
<td>91, 94, 102, 104, 105, 107, 109</td>
</tr>
<tr>
<td>Antidiabetes food</td>
<td>146</td>
</tr>
<tr>
<td>Antihyperglycemic agents</td>
<td></td>
</tr>
<tr>
<td>Antioxidant activities</td>
<td>168, 206</td>
</tr>
<tr>
<td>Approach of Ayurveda</td>
<td>59, 62, 131</td>
</tr>
<tr>
<td>Arterial diameter</td>
<td>321</td>
</tr>
<tr>
<td>Ayurvedic approach</td>
<td>127</td>
</tr>
<tr>
<td>Ayurvedic foods</td>
<td>127</td>
</tr>
<tr>
<td>Ayurvedic remedy</td>
<td>206</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Term</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>β-carotene</td>
<td>165, 177, 179, 181-184</td>
</tr>
<tr>
<td>Bioactive food components</td>
<td>277, 280, 291, 292</td>
</tr>
<tr>
<td>Biotin</td>
<td>37, 146, 157, 167, 170</td>
</tr>
<tr>
<td>Black sorghums tannins</td>
<td>308</td>
</tr>
<tr>
<td>Bladder cancer prevalent</td>
<td>177-178</td>
</tr>
<tr>
<td>Blood sugar regulation</td>
<td>146</td>
</tr>
<tr>
<td>BMI</td>
<td>45-47, 57, 91, 96-97, 102, 105-110, 113-114, 116-118, 300, 305, 322, 330</td>
</tr>
<tr>
<td>Body mass index</td>
<td>36, 42, 46, 55, 96-97, 111, 300, 322</td>
</tr>
<tr>
<td>Brain</td>
<td>32, 93, 267, 330-337</td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th>Term</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carcinogenic fern</td>
<td>177-178</td>
</tr>
<tr>
<td>Cardiac glycosides</td>
<td>194, 198-200</td>
</tr>
<tr>
<td>Cardio vascular diseases</td>
<td>91, 206</td>
</tr>
<tr>
<td>Cariaca papaya Linn</td>
<td>194-195</td>
</tr>
<tr>
<td>Carotid artery</td>
<td>300, 321</td>
</tr>
<tr>
<td>Citrus paradissi</td>
<td>194, 196-197</td>
</tr>
<tr>
<td>Cellular immunity</td>
<td>78, 83, 86, 88</td>
</tr>
<tr>
<td>Term</td>
<td>Pages</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Chemoprevention</td>
<td>206, 343-344, 349-352, 355, 360-378</td>
</tr>
<tr>
<td>Choline</td>
<td>146, 157, 167-168, 170, 173-174, 269</td>
</tr>
<tr>
<td>Coenzyme Q<sub>10</sub></td>
<td>164, 167, 168, 174, 253</td>
</tr>
<tr>
<td>D</td>
<td></td>
</tr>
<tr>
<td>Diabetes control</td>
<td>194</td>
</tr>
<tr>
<td>Diabetes type 2</td>
<td>78-79, 88, 113</td>
</tr>
<tr>
<td>Dietary regimen</td>
<td>59</td>
</tr>
<tr>
<td>Drum drying</td>
<td>206, 211</td>
</tr>
<tr>
<td>Dyslipidemia</td>
<td>36, 249, 298, 302, 321</td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>Ethnobotany</td>
<td>344-349</td>
</tr>
<tr>
<td>Ethnomedicine</td>
<td>195, 204, 351, 362, 372, 375</td>
</tr>
<tr>
<td>Ethnopharmacology of food</td>
<td>344, 346, 347</td>
</tr>
<tr>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Family history</td>
<td>64, 91, 95, 100-101</td>
</tr>
<tr>
<td>Fat content</td>
<td>21, 50, 164, 166, 172, 173, 256, 330</td>
</tr>
<tr>
<td>FBS</td>
<td>59</td>
</tr>
<tr>
<td>Flavonoids</td>
<td>156, 185, 188, 192, 200, 205, 303, 312, 318, 377</td>
</tr>
<tr>
<td>Flavanones</td>
<td>308, 312-315</td>
</tr>
<tr>
<td>Flaxseed powder</td>
<td>298, 303, 304, 321</td>
</tr>
<tr>
<td>Food synergy</td>
<td>366, 371, 372, 374, 375, 377</td>
</tr>
<tr>
<td>Folic acid</td>
<td>37, 130-132, 143, 164, 166, 168, 170, 173-174, 269</td>
</tr>
<tr>
<td>Functional food</td>
<td>27, 34, 78, 146, 148, 156-157, 185, 215,234, 235, 246, 269, 272, 302, 343-377</td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
<tr>
<td>Germinating seeds</td>
<td>146-147, 157</td>
</tr>
<tr>
<td>Gluten-free foods</td>
<td>308</td>
</tr>
<tr>
<td>H</td>
<td></td>
</tr>
<tr>
<td>Hard capsules</td>
<td>215, 216, 218, 222</td>
</tr>
<tr>
<td>HbA1C</td>
<td>29, 34, 36, 45, 59, 68, 334</td>
</tr>
<tr>
<td>Healthy food</td>
<td>18</td>
</tr>
</tbody>
</table>
Heart disease 14, 32, 35, 77, 92, 100-101, 127, 131-132, 144, 157, 206, 246, 249, 268, 277, 301, 323, 325
Herbal extract 215-232
Hibiscus sabdariffa 194, 196, 198, 204
Honey and garlic mix 206, 208, 209, 212-213
Hop 215, 217-218, 223-224, 227, 231
Humoral immunity 78, 79, 83, 86
Humulus lupulus L 215, 216, 232
Hyperglycemia 29, 31, 32, 36, 38, 39, 45, 46, 49, 54, 60, 64, 65, 90, 147, 152, 254, 266, 270, 301, 331-334
Hypothalamus 330-332, 335-337
Hyperhomocysteinemia 127, 130-132, 269
Hypertension 32, 46, 80, 81, 91-108, 116, 124, 147, 153, 167, 186, 192, 196, 206, 217, 267, 270, 278, 284, 285, 288, 302, 322, 341

I
IgA 78-88
IgG 78-88
Immunologic activities 206
Inflammation 50, 252, 266, 284, 298, 304, 322
inorganic nitrate 277, 287
Inorganic nitrite 277, 282-284, 304
Insulin resistance 18, 29, 49, 60, 92, 103, 116, 121, 202, 249-252, 258, 261-264, 270, 300, 304, 322, 325, 330-334

J
Lactobacillus 18, 19, 22, 267
Lipid peroxidation 177-184, 251
Lycopene 196, 234-242
Lycopersicum esculentum 234

M
Madhu-Lasuna 206
Melissa 215-219, 223-224, 231
Metabolic disorders 35, 59, 62-63, 113-114
Milk 19, 21, 25, 33, 62, 148, 164-174, 246-249, 253-269
Multiparity 113, 121
N
Neurotrophic factor 330, 331, 334, 340
Niacin 34, 37, 63, 146, 157, 167, 170
Nitric oxide synthase 264, 277, 291
NO 48, 254, 255, 264, 267, 277-291, 300
Nutraceuticals 146, 234

O
Obesity 298, 305, 321
Oleic acid 288, 323, 330, 331, 336-337
Omega-3 260-261, 298, 304, 321-325, 366
Organic nitrates 277, 280, 284

P
Phagocytic capacity 18
Phagocytic index 78-89
Phytopharmacology 343-347, 355, 360, 365-367, 371-373, 378
Plasma lipids 113
Polyunsaturated fatty acids 251, 257, 260, 323, 330
Prebiotics 18, 19, 22, 27, 354
Probiotics 18, 19, 22, 27, 354

R
Riboflavin 37, 63, 130, 146, 157, 167, 170, 269

S
Saponin 153, 188, 190, 193, 194, 198-201, 217
Serum leptin 113
Sorghum 308-316
Sprouts 63, 66, 146-147, 155, 157
Steroids 172, 194, 199, 253
Systemic inflammation 298-303, 321
Sunflower oil 78-80, 83-84, 86, 88

T
Tannins 194, 198-200, 216-217, 308-309, 314-315
Therapeutic value 157
Total antioxidative capacity 164, 168, 173
Toxic plants 177-178
Traditional functional foods 345-353, 355, 359, 362, 366-378

U
Unsaturated fatty acids 79, 251, 257, 260, 288, 323, 330, 341

V
Valerian 215-218, 223-224, 227, 231
Valeriana officinalis L 215, 216, 233
Vitamins 19, 32, 37, 48, 127, 131, 155, 157, 164-165, 168, 170, 172-174, 246, 257, 269
Vitamin-E 177, 182

W
Waist circumference 96-97, 103, 107-109, 113-117, 121, 124, 302
Whey fruit juice 234, 236, 241-242

Y
Yogurt 18-27
Yogurt drink 18-27
ARTICLE REVIEWER’S LIST

Peer reviewers are key to contributing to the quality of scholarly journals. I would like to thank the following reviewers who have taken part in the peer-review process for “Functional Foods for Chronic Diseases, Volume 5”

1. Aldo R Eynard, MD PhD
 Histologia y Embriologia Instituto de Biologia Celular
 Professor Catedra de Biologia CelularCasilla de Correos,
 Cordoba, Argentina

2. Benny KH Tan, MD, PhD
 Associate Professor, Department of Pharmacology,
 Faculty of Medicine, Yong Loo Lin School of Medicine,
 National University of Singapore, Singapore

3. Bhuvnesh kumar Sharma, MD (Ay), PhD
 National Institute Indian Medical Heritage
 Osmania Medical College
 Hyderabad, India

4. Christine Houghton, Managing Director
 Cell-Logic Pty Ltd,
 Helesvale, Quensland, Australia

5. Danik M. Martirosyan, PhD
 Functional Food Center Inc
 Richardson (Dallas), TX, USA

6. Dennis Mckenna, PhD
 Assistant Professor at the University of Minnesota,
 Minneapolis, MN, USA

7. Eloy Rodriguez, PhD
 Professor of Medical Ethnobotany,
 Cornell University, CA, USA

8. Florentina Maria Dewi Puspitasari Tirtaningtyas Gunawan-
 Puteri, PhD
Laboratory of Food Biochemistry
Graduate School of Agriculture
Hokkaido University
Hokkaido Sapporo, Japan

9. Francesco Carluccio, MD, PhD
Institute of Clinical Physiology,
Pisa, Italy

10. Gordana Bjelakovic, MD, PhD
Medical Faculty, University of Nis,
Nis, Serbia

11. Guan Teng, PhD
Department of Pharmacology,
China Pharmaceutical University,
Nanjing Jiangsu Province, China

12. Gundu H R Rao, PhD
Department of Medicine and Pathology,
University of Minnesota,
Minneapolis, MN, USA

13. John R. N. Taylor, PhD
University of Pretoria,
Department of Food Science,
Pretoria, ZA

14. M.N. Igwo-Ezikpe, PhD
University of Lagos, Akoka,
Lagos, Nigeria

15. Momin Ali, PhD
Assistant Director,
Indian Institute of History of Medicine,
Hyderabad, India

16. Ngozi Awa Imaga, PhD
Department of Biochemistry,
College of Medicine, University of Lagos,
Idi-araba, Lagos, Nigeria

17. Norm Hord, PhD
 Associate Professor, Registered Dietitian,
 Department of Food Science and Human Nutrition,
 Michigan State University, MI, USA

18. Okafor Uzoma, PhD
 Department of Biochemistry, Collage of Medicine,
 University of Lagos, IDI Araba, Nigeria

19. Scott Bean, PhD
 Grain Quality and Structure Research,
 USDA-ARS-GMPRC-GQSRU,
 GMPRC, Manhattan, KS, USA

20. Sergio O. Serna-Saldivar, PhD
 Departamento de Biotecnología e Ingeniería de Alimentos, Sur CP, Monterrey, NL, México

21. Tienush Rassaf, M.D., Ph.D.
 Klinik für Kardiologie, Pneumologie, Angiologie
 Düsseldorf, Germany

22. Undurti N. Das, MD
 UND Life Sciences,
 Shaker Heights, OH, USA

23. Vijay Kumar Mishra, PhD
 School of Biomedical and Health Science,
 Victoria University-Werribee Campus, Australia

24. Vinod kumar Lavaniya, MD, (Ay), PhD
 National Institute Indian Medical Heritage,
 Osmania Medical College, Hyderabad, India

25. Vladimir Zoloedov, MD, PhD
 Voronezh State Medical Academy,
 Voronezh, Russia
43% Improvement in Triglycerides,

20% Improvement in Blood Sugar and,

14% Improvement in Total Cholesterol

in Just 21 Days… With Just 18 ml of Amaranth Oil per Day!

It has been shown in a double-blind, placebo-controlled study, to improve total cholesterol – up to 14%, triglycerides by 43% in just 21 days with 18 ml per day amaranth oil with a squalene content of 600 mg/day. It was established that amaranth oil may reduce the amount of glucose in the blood plasma by an average of 20% in patients with diabetes type 2. The clinical study of 82 patients, with diabetes type 2 was published in the book “Functional Foods for Chronic Diseases”, Volume 4, 2009. Amaranth oil is extracted by cold press methods without any chemicals.

Also, you can find information about the therapeutic effects of amaranth oil in the article “Amaranth oil Application for Coronary Heart Disease and Hypertension” in the peer-reviewed open access BioMed Central journal Lipids in Health and Disease 2007 6:1 at http://www.lipidworld.com/content/6/1/1

For more information about amaranth oil, please visit: http://www.rusoliva.com/

Amaranth Oil with Squalene