Metabolic Syndrome and the Components of the Mediterranean Diet

This peer-reviewed article was published immediately upon acceptance. It can be downloaded, printed and distributed freely for any purposes (see copyright notice below).

The article by Dr. Maria Luz Fernandez is based on her respective talk at the American Society for Nutrition Satellite Symposium at the Annual Meeting of Experimental Biology on April 23, 2010, in Anaheim, CA, entitled, “Emerging clinical applications of diet and supplemental phytochemicals for metabolic syndrome and obesity”.

This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Metabolic Syndrome and the Components of the Mediterranean Diet
Maria Luz Fernandez

Department of Nutritional Sciences, the University of Connecticut
3624 Horsebarn Road Extension, Storrs, CT 06269

Running title: Metabolic syndrome and diet

Corresponding author:
Maria Luz Fernandez, PhD, Professor

Department of Nutritional Sciences, the University of Connecticut
3624 Horsebarn Road Extension, Storrs, CT 06269

Key words: Metabolic syndrome, Mediterranean diet, dyslipidemia, inflammation, clinical study
Abstract
Metabolic Syndrome (MetS) is a cluster of metabolic abnormalities known to increase heart disease risk by two-fold and type 2 diabetes risk by five-fold. These disturbances include dyslipidemias, hypertension, hyperglycemia and central adiposity in addition to insulin resistance and low grade inflammation. The prevalence of MetS is about 34% in the United States with variations according to ethnicity and race. Lifestyle factors including smoking, lack of exercise, poor dietary habits as well as low socioeconomic status are associated with the development of MetS. Diet is considered one of the major contributors to MetS. Adherence to the Mediterranean diet (high intake of whole grains, fruits and vegetables, olive oil, fish, low-fat dairy products, and moderate wine consumption) has been associated with lower prevalence of MetS. Interventions utilizing this dietary approach have proven to be successful in reducing some of the associated metabolic abnormalities. In this review, evidence from epidemiological and clinical studies showing the benefits of the Mediterranean diet is presented. The effect of the specific components of the Mediterranean diet is also discussed.

Abbreviations used: CHD: coronary heart disease; FFA: free fatty acids; IL-6: interleukin 6; MedD: Mediterranean diet; MetS: metabolic syndrome, T2DM: type-2 diabetes mellitus; TG: triglycerides; TNF-α: tumor necrosis factor-α; WC: waist circumference

Introduction
Overweight and obesity trends have substantially increased in alarming proportions in the last 40 years. Using the 1976-2008 National Health Interview Services, Singh et al. \[^1\] reported that the prevalence of overall overweight increased from 36.9 to 62%, among which the prevalence of obesity increased from 8.7 to 27.4%. As it is well established that overweight/obese individuals have a higher risk of developing insulin resistance, metabolic syndrome (MetS), diabetes, hypertension and coronary heart disease (CHD) \[^2\], there is a great need for prevention programs prescribing healthy diets and promoting exercise.

MetS encompasses a cluster of symptoms including dyslipidemias, central obesity, high fasting glucose and hypertension. These factors are associated with increased risk for both type-2 diabetes mellitus (T2DM) and CHD \[^3\]. The latest consensus on the definition of the MetS is as follows: Waist circumference (WC) ≥102 cm for men and ≥ 88 cm for women; triglycerides (TG) ≥ 150 mg/dL (1.69 mmol/L); HDL ≤ 40 mg/dL (1.04 mmol/L) for men and ≤ 50 mg/dL (1.29 mmol/L) for women; blood pressure ≥ 130/85 mm Hg; and fasting glucose ≥ 100 mg/dL (5.55 mmol/L). When 3 out of 5 identified characteristics are present, a diagnosis of MetS is made \[^4\].

Central obesity or increased WC is a key determinant in the development of MetS. While abdominal obesity is determined by accumulation of both subcutaneous and visceral adipose tissue, the latter appears to play a major role in the metabolic irregularities that characterize MetS \[^5\]. Insulin resistance and many of its related features could arise from trunk fat delivering free fatty acids (FFA) at a high rate to the liver via the portal vein. This effect in turn increases hepatic glucose production, reduces hepatic insulin clearance, and finally leads to insulin resistance, hyperinsulinemia and hyperglycemia \[^6\]. MetS is also characterized by a pro-inflammatory state and oxidative stress, which further increases CHD risk \[^7\]. Pro-inflammatory cytokines, such as C-reactive protein, interleukin (IL)-6 and tumor necrosis factor-alpha (TNF-α), can also promote insulin resistance and impaired glucose tolerance, and accelerate the development of MetS and T2DM \[^8\].
Changes in macronutrient composition such as carbohydrate restriction [9] have been shown to substantially decrease central adiposity in subjects with MetS. Other dietary interventions using low glycemic-load diets [10] or low-fat diets [11] have also been effective in reducing WC and central adiposity. Diets high in antioxidants including polyphenols [12], carotenoids [13] and minerals such as selenium [14] have been useful in reducing inflammation and oxidative stress. Results from these studies [9-14] indicate that both macronutrient composition and antioxidants present in food are quite effective in reducing the metabolic abnormalities that are associated with MetS.

The Mediterranean-style dietary pattern, characterized by increased consumption of whole grains, fruit, vegetables, nuts, N-3 fatty acids and olive oil, has been shown to protect against MetS [15]. In this review, evidence from epidemiological and clinical studies showing the benefits of the Mediterranean diet (MedD) is presented. The effect of the specific components of the MedD is also discussed.

Epidemiological data

Epidemiological analyses of association between adherence to the MedD and prevalence of MetS have been conducted in different populations. Evaluation of the SUN cohort, consisting of graduate students from Universidad de Navarra who were followed for 6 years, found that participants with the highest adherence to the MedD exhibited the lowest levels of all risk factors of MetS [16]. Another study conducted among obese Greek individuals concluded that adherence to the MedD was associated with decreased prevalence of MetS [17]. Similarly Babio et al [18], in a cross-sectional study with 808 high cardiovascular risk patients, reported that the group with the highest adherence to the MedD had the lowest odds ratios of having MetS (0.44, 95% CI 0.2 – 0.7) compared to those with the lowest adherence.

A cross-sectional study from individuals participating in the Canarian Nutrition Survey (ENCA) demonstrated that highest adherence to MedD was associated with lower blood pressure, although there was also a higher prevalence of hyperglycemia [19]. Other reported associations between dietary patterns and risk variables included moderate alcohol intake and high HDL in men, fruit intake protecting against hypertriglyceridemia, and dairy product consumption
inversely associated with hyperglycemia [19]. In contrast, a multicenter study of the Mediterranean group concluded that prevalence of MetS was not related to MedD [20]. Overall, results from the ENCA study are controversial and do not present a clear benefit of high adherence to MedD in lowering prevalence of MetS. The ATTICA study, a national health survey based on 2282 Greek adults, reported that 19.8% of subjects had MetS [21]. Although the odds ratio of having MetS among individuals consuming the MedD was 0.81, high levels of inflammatory markers in this population could not be explained by the choice of diet [21].

Rumawas et al. [15] evaluated the effects of MedD pattern in mitigating the risk factors for T2DM and CHD in the Framingham offspring cohort. Higher adherence to this diet was associated with lower WC, fasting plasma glucose, TG, and high HDL, indicating that this type of diet modifies all parameters of MetS. Further, the consumption of the MedD has been evaluated in patients diagnosed with heart disease [22], those with T2DM [23], and those receiving renal transplantation [24]. In these three studies, adherence to the MedD has been associated with reduced risk of MetS.

Clinical trials

Effects on parameters of MetS

Several recent clinical trials demonstrated that following a MedD resulted in the improvement of one or more characteristics of MetS. Esposito et al. [25] compared two different interventions, a MedD (n = 90) and a prudent diet (n = 90). After 2 years, 40 patients in the intervention group had MetS compared to 78 in the control group (P < 0.001), indicating a greater net resolution of MetS when consuming MedD. Lerman et al. [26] recruited 49 subjects with MetS and hypercholesterolemia who were prescribed to consume a low-glycemic-load Mediterranean style diet for 12 weeks. Subjects were randomized to diet alone or diet supplemented with specific phytochemicals. At end of study, 22% of subjects consuming the diet alone and 43% of those receiving the additional phytochemicals had a net resolution of MetS, and the latter had greater reductions in their dyslipidemias. Estruch et al [27] recruited 72 individuals and assigned them to 3 different groups: low-fat diet (n=257), MedD plus olive oil (n= 257), or MedD plus nuts (n=258). The authors concluded that the MedD was more effective than the low-fat diet in reducing the parameters associated with MetS and inflammation. In the PREDIMED randomized trial of high risk individuals, researchers reported that enriching the MedD with nuts was more
effective in reducing abdominal obesity, decreasing plasma TG and improving blood pressure [28].

Other studies have also reported improvement on all MetS parameters after following a MedD for 12 weeks [29]. In contrast, in a study of individuals with already established and treated CHD who adopted a MedD over 1 year, the diet had no effect on markers of inflammation or other metabolic risk factors [30]. In another study in which subjects with abdominal obesity were prescribed a MedD for 2 months [31], those under diet supervision (to ensure adherence to MedD) exhibited improved endothelial function and greater reductions in blood pressure [31].

Effects on inflammatory markers
In a study of 220 healthy women from Greece, significant associations were found between the adiponectin levels and the consumption of whole grain, low-fat dairy, and reduced intake of refined cereals, three components of the MedD [32]. Hermsdorff et al. [32] evaluated the effects of a hypocaloric MedD diet on plasma concentrations of retinol binding protein-4 (RBP4), TNF-α and IL-6. Individuals who had greater adherence to the diet exhibited significant reductions in these markers of inflammation. A study using a MedD with a low glycemic load also demonstrated a reduction in inflammation and insulin resistance after 12 weeks [33]. Overall, these results suggest the efficacy of MedD in healthy populations [25-29, 31-34]. A summary of these studies is presented in Table 1.

Individual components of MedD and their effects on parameters of MetS
The multiple beneficial effects of the MedD on the parameters of MetS are closely associated with its individual dietary components. The effects of these components on WC, BP, TG, HDL and fasting glucose are summarized in Figure 1.

N-3 fatty acids or fish consumption. It is well established that intake of N-3 fatty acids, especially in the form of fish oil, results in decreases in plasma TG [34]. The main mechanisms involved are decreased hepatic TG synthesis and faster removal from plasma [35]. Consumption of fish oil has also been associated with decreases in CHD due to its known effects in preventing arrhythmias, decreasing platelet aggregation, and lowering heart rate [35]. Further, fish oil has been shown to decrease blood pressure [34].
Olive oil. Olive oil is one of the most representative food items of the traditional MedD. A recent review demonstrated its beneficial effects on lowering blood pressure, reducing plasma glucose, and improving the cholesterol/HDL ratio and endothelial function \[^{36}\]. In a study in which MetS patients consumed virgin olive oil and provided blood samples, the researchers found repressed expression of pro-inflammatory genes in the mononuclear cells \[^{37}\]. This suggests that the anti-inflammatory effects associate with MedD could partially be attributed to this dietary constituent.

Low-fat dairy. Epidemiological data suggest a strong link between dairy consumption and decreased insulin resistance and incidence of T2DM. The Prospective Coronary Artery Risk Development in Young Adults study reported a 21% decrease in insulin resistance with each daily serving of low-fat dairy products \[^{38}\]. The beneficial effects may be associated with several of the nutrient components including calcium, magnesium, potassium, and certain protein-derived peptides with hypotensive properties \[^{39}\]. Low-fat dairy has also been reported to have an influence on waist circumference in women \[^{40}\].

Low glycemic index and increased protein intake. The MedD is characterized by daily consumption of whole grains and high intake of complex carbohydrates and dietary fiber, mainly from fruits and vegetables \[^{41}\]. Studies have shown that decreasing intakes of refined carbohydrate \[^{9}\] or reducing the glycemic index of a diet \[^{29}\] can reduce central obesity.

Moderate wine consumption. Moderate wine consumption may be one of the few dietary interventions known to raise plasma HDL. It has been associated with a lower prevalence of MetS, T2DM and CHD \[^{42}\]. Koppes et al. \[^{43}\] investigated cross-sectional and longitudinal relationships between alcohol consumption and HDL and reported a positive significant relationship at moderate consumptions. Moderate wine consumption has also been associated with down-regulation of adhesion molecules and other inflammatory biomarkers, which may explain its role in decreasing the risk for CHD \[^{44}\].

Whole grains. High intake of whole grains has been related to lower plasma glucose and improved insulin sensitivity in healthy individuals and in T2DM patients. Data from the Nurses’ Health Study also document the importance of whole grain intake as a means to help prevent T2DM \[^{45}\]. A recent review proposed that, in addition to the well known constituents of whole
grains that protect against heart disease and diabetes, whole grains are also a rich source of methyl donors and lipotropes that may be involved in lipid metabolism and DNA methylation [46]. Weickert and Pfeiffer [47] emphasized the emerging knowledge in the effects of insoluble fiber derived from whole grains in increasing insulin sensitivity, modulating secretion of gut hormones, and decreasing inflammation. Consumption of whole grains has also been associated with increases in adiponectin [32].

Fruits and vegetables. Fruits and vegetables are excellent sources of fiber and key vitamins and minerals. Due to their high content in antioxidants, increased consumption of fruits and vegetables has been associated with decreased concentrations of C-reactive protein and homocysteine [48], thus exerting a protective effect against CHD and T2DM. Polyphenols and flavonoids present in fruits and vegetables have also been shown to decrease plasma TG [49] and blood pressure [50].

Nuts. Nuts have been shown to have multiple health benefits, including decreasing plasma cholesterol and TG, ameliorating hypertension, and contributing to decreases in WC [19]. There is also strong evidence of nuts protecting against CHD based on their effect in lowering LDL [51]. In addition, nuts have the potential to control hyperglycemia as they diminish the glycemic response to food [52]. Further, reductions in oxidation have been observed in subjects who consumed 30 g/d of nuts for 12 weeks [53].

Conclusion
With its macronutrient composition and the presence of antioxidants, N-3 fatty acids and moderate alcohol, the Mediterranean diet appears to be effective in decreasing metabolic abnormalities associated with MetS, including central obesity, dyslipidemias, hypertension, hyperglycemia, and inflammation. Epidemiological data suggest that individuals following this type of diet are at decreased risk for MetS and the associated complications of T2DM and CHD. Further, recent clinical trials in healthy individuals and those diagnosed with heart disease, diabetes or renal failure appear to benefit from adhering to Mediterranean style diets.

Competing Interests
Maria Luz Fernandez is the sole author of this paper. The author declares no competing interests.
FIGURE 1. Effects of the Mediterranean diet on the parameters of metabolic syndrome (MetS). Central obesity is on the axis of MetS leading to increased waist circumference (1. WC). Free fatty acids (FFA) are released into circulation from adipose tissue to liver, muscle and pancreas. In the liver, they result in increased production of VLDL associated with elevated plasma triglycerides (2. TG) and low HDL (3. HDL). In the pancreas, there is apoptosis and cell death that will result in increases in plasma glucose (4. Glucose). In the muscle, FFA lead to insulin resistance and increased blood pressure (5. BP). In parentheses next to each of the MetS characteristics are some of the nutrients or food items from Mediterranean diet that have been shown to correct that metabolic abnormality.
Table 1. Results from clinical studies using Mediterranean diets (MedD) on the parameters of metabolic syndrome and inflammation.

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Design</th>
<th>Time</th>
<th>Results</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>180 Individuals</td>
<td>Randomized, Parallel: 90 MedD 90 Prudent Diet</td>
<td>2y</td>
<td>78 individuals in MedD no longer had MetS 40 Individuals from Prudent Diet</td>
<td>25</td>
</tr>
<tr>
<td>44 Individuals</td>
<td>Randomized, Parallel: 9 MedD only 25 MedD + Phytochemicals</td>
<td>3 mo</td>
<td>22% of subjects in MedD only had resolution of MetS 43% subjects in MedD + phytochemicals had resolution of MetS</td>
<td>26</td>
</tr>
<tr>
<td>772 Symptomatic subjects</td>
<td>Randomized, Parallel: 257 Low fat 257 MedD + olive oil 257 MedD + Nuts</td>
<td>1 y</td>
<td>Significant differences in MedD compared to low fat diet. MedD favorably affected all parameters of MetS</td>
<td>27</td>
</tr>
<tr>
<td>1224 Subjects with CVD risk (61.4% with MetS)</td>
<td>Randomized Parallel: Low fat, MedD+ olive oil and MedD+Nuts</td>
<td>1y</td>
<td>Resolution of MetS was 2.9% for low fat 6.7% for MedD+ olive oil and 13.7% MedD + nuts</td>
<td>28</td>
</tr>
<tr>
<td>101 Patients with established heart disease</td>
<td>Randomized, parallel 48 MedD 53 Control</td>
<td>1 year</td>
<td>No changes in plasma lipids or inflammatory markers</td>
<td>30</td>
</tr>
<tr>
<td>90 Subjects with abdominal obesity</td>
<td>Randomized, Parallel MedD only MedD with close supervision</td>
<td>2 mo</td>
<td>Reductions in diastolic blood pressure and improvement in endothelial function in MedD group with supervision</td>
<td>31</td>
</tr>
<tr>
<td>41 Subjects 24F/17M</td>
<td>Hypocaloric MedD</td>
<td>8wk</td>
<td>Significant reductions in inflammatory markers</td>
<td>33</td>
</tr>
<tr>
<td>89 Overweight women with MetS</td>
<td>Randomized, parallel: 44 MedD only 45 MedD + Medical food</td>
<td></td>
<td>All Subjects independent of treatment had significant decreases in inflammatory markers</td>
<td>34</td>
</tr>
</tbody>
</table>

1 None of these studies included caloric restriction except for reference 33.
References

