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ABSTRACT 

Background: Plant N-alkylamides (NAAs) are bio-active compounds with a broad functional 

spectrum. In order to reach their pharmacodynamic targets, they have to overcome several 

barriers of the body in the absorption phase. The permeability kinetics of spilanthol (a diene 

NAA) and pellitorine (a triene NAA) across these barriers (i.e. skin, oral/gut mucosa, blood-

brain barrier) were investigated.  
 

Methods: The skin and oral mucosa permeability were investigated using human skin and pig 

mucosa in an ex vivo in vitro Franz diffusion cell set-up. The gut absorption characteristics were 

examined using the in vitro Caco-2 cell monolayer test system. The initial blood-brain barrier 

transport kinetics were investigated in an in vivo mice model using multiple time regression and 

efflux experiments. Quantification of both NAAs was conducted using HPLC-UV and bio-

analytical UPLC-MS methods. 
 

Results: We demonstrated that spilanthol and pellitorine are able to penetrate the skin after 

topical administration. It is likely that spilanthol and pellitorine can pass the endothelial gut as 

they easily pass the Caco-2 cells in the monolayer model. It has been shown that spilanthol also 

crosses the oral mucosa as well as the blood-brain barrier.   
 

Conclusion: It was demonstrated that NAAs pass various physiological barriers i.e. the skin, oral 

and gut mucosa, and after having reached the systemic circulation, also the blood-brain barrier. 

As such, NAAs are cosmenutriceuticals which can be active in the brain. 

 

Key words: Plant N-alkylamides, pharmacokinetics, mucosa/skin, blood-brain barrier (BBB), 

cosmenutriceuticals  
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1. INTRODUCTION  

The biomedical interest in N-alkylamides (NAAs), a large group of secondary metabolites found 

in various medicinal plants, has increased enormously. These compounds, occurring in more 

than 25 plant families, have a wide structural diversity and are potential lead compounds for 

functional food, cosmetics and medicines, as well as biocidal and plant protection products. They 

are known to have analgesic, antimicrobial, insecticidal, sensory, anti-inflammatory and 

immune-modulating properties and are traditionally used to treat toothache, skin and gastric 

diseases, sexual dysfunctions and viral infections. Besides these ethnopharmacological uses in 

traditional medicine, plants containing NAAs are also used as spices for their pungent and 

tingling sensations, and are incorporated in topical cosmetics for their wrinkle smoothing, anti-

aging properties. These compounds have thus a broad biofunctional spectrum interacting with 

different targets via several mechanisms (promiscuous pharmacodynamics) [1-7].  

A chemical and functional database (online available), Alkamid
®
, was previously developed 

to give a clear overview of the botanical occurrence of NAAs in the plant families, their 

chemistry, physico-chemical properties and the biofunctionalities [1]. The different N-

alkylamides possess a wide structural diversity with a central peptide bond as common feature. 

Generally, the plant NAAs consist of an aliphatic chain of poly-unsaturated fatty acids linked to 

a short-chain amine. Our NAA structural classification is build up from these two parts, starting 

with ‘‘F’’ (indicative for fatty acids part) followed by the fatty acid category (from 1 to 13) and 

ends with ‘‘M’’ (indicative for the amino part) followed by the amino category (from 1 to 13). 

Combining the F part with the M part yields thus different chemical NAA classes (FxMy 

nomenclature). 

Spilanthol (affinin) is an F3M1 N-alkylamide belonging to the Asteracea plant family and is 

present in several species of Spilanthes, e.g. acmella, in which it is the best known and most 

abundant compound. Pellitorine (F3M1 NAA) occurs in different plant families, including also 

the Asteracea family Anthemideae tribe, Anacyclus genus and pyrethrum species. Spilanthol 

(deca-2E,6Z,8E-trienoic acid isobutylamide) is a triene, while pellitorine (deca-2E,4E-dienoic 

acid isobutylamide) only possesses two unsaturated carbon bonds (diene). The structures of these 

particular NAAs are given in Figure 1.  

NAAs can be orally or dermally administered (Figure 1). However, several physiological 

barriers, present in the human body, can complicate or prevent the absorption of NAAs into the 

general blood circulation (Figure 1). When topically applied, NAAs must be able to penetrate the 

stratum corneum, the outer layer of the skin, and reach the viable cells of the epidermis and 

underlying dermis with its blood vessels in order to obtain a biological effect. After oral 

administration, NAAs must be absorbed from the gastrointestinal lumen, thereby passing the oral 

and/or intestinal mucosal barriers. Previous research by our group already indicated the 

successful dermal administration of NAAs thereby reaching the general blood circulation [8-10]. 

Moreover, Matthias et al. (2004) already investigated the transport of selected N-alkylamides 

present in Echinacea through the Caco-2 cell monolayer model: after 90 minutes, more than 50% 

of the NAAs penetrated the monolayer, indicating the functionality of oral administration as well 

[11]. 
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Once in the general circulation, NAAs have theoretically the possibility to diffuse across the 

blood-brain barrier (BBB), where they can elicit desirable but also unwanted central nervous 

system (CNS) effects. Several CNS diseases (e.g. epilepsy or neurodegenerative disorders) are 

currently still hard to treat, and one of the development hurdles is the impermeable BBB, making 

it difficult for drugs to cross this barrier. Woelkart et al. (2009) demonstrated that dodeca-

2E,4E,8Z,10E/Z-tetraenoic acid isobutylamides (tetraenes originating from Echinacea), orally 

given to rats, are bioavailable with a rapid passage across the blood-brain barrier [12]. These 

results suggest a possible action of plant NAAs within the central nervous system.   

 

 

Figure 1: Overview pharmacokinetics of NAAs 

 

Our general goal was to further elucidate the possible human functionalities of plant NAAs 

by a quantitative distribution pharmacokinetic investigation. Our hypothesis was that plant 

NAAs do pass the different biological barriers. Therefore, NAAs with different structures, e.g. 

spilanthol, a triene NAA, and pellitorine, a diene NAA, were topically applied on mucosa and 

skin to evaluate their penetration and permeability. The gut absorption was investigated as well, 

using the in vitro Caco-2 monolayer model. In addition, blood-brain barrier transport of 

spilanthol in mice was also examined. Based on these results, an overall conclusion was drawn 

related to oral and intestinal mucosal, dermal and blood-brain barrier permeability 

characteristics, indicating possible effects of NAAs in the central nervous system.  
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2. MATERIALS  

2.1. Products examined 

The Spilanthes acmella extract (label claim: 30 % w/w spilanthol in ethanol) was a generous gift 

of Robertet (Grasse, France), while the Anacyclus pyrethrum extract, originating from India, was 

prepared and characterised as previously described [13].  The  spilanthol dose solutions used in 

the Franz diffusion cell experiments are described in detail by Boonen et al. [8,9]. Briefly, 

different commercial formulations were used (Indolphar
®
, Buccaldol

®
, A. Vogel

®
 Spilanthes 

acmella extract), as well as spilanthol dissolved in propylene glycol and ethanol. Pellitorine was 

dissolved in an ethanol-water solution for topical administration [15]. The spilanthol and 

pellitorine dose solutions for the Caco-2 cell experiment were prepared in Hanks’ balanced salt 

solution, containing maximum 0.5% ethanol. For the blood-brain barrier experiment, spilanthol 

was dissolved in ethanol, dimethylacetamide, tween and lactated ringer’s solution with bovine 

serum albumin [16].      

 

3. METHODS  

3.1. In vitro skin permeation study 

The transmucosal behaviour of spilanthol was evaluated using porcine buccal mucosa, while the 

transdermal behaviour of spilanthol and pellitorine was analysed using human skin in a Franz 

diffusion cell (FDC) set-up [8-10, 14, 15]. In brief, static Franz diffusion cells with a receptor 

compartment of 5 ml and an available diffusion area of 0.64 cm² were used to determine the skin 

permeation kinetics of the N-alkylamides. The transbuccal and transdermal experiments with 

spilanthol were performed six and four times, respectively. The FDC experiment with pellitorine 

was done in fourfold. 500 µl of the dose solutions were applied on the skin surface with a 

micropipette. The donor chamber was covered with parafilm to prevent evaporation of the dose 

formulations. During the FDC experiment, the temperature of the receptor compartment was kept 

constant at 32 °C by a water jacket. 200 µl aliquots of receptor fluid were taken at regular time 

intervals from the sample port and were immediately replaced by 200 µl of fresh receptor fluid. 

A linear relationship of the individual cumulative amount of the N-alkylamides versus time was 

observed, and steady state sink conditions were confirmed by these data. Quantification of the N-

alkylamides in the samples was done using a high-throughput validated High Performance 

Liquid Chromatography – Ultraviolet (HPLC-UV) method. 

 

3.2. In vitro permeation study in Caco-2 monolayers  

The gut mucosa kinetics of spilanthol and pellitorine were investigated using a Caco-2 cell 

intestinal model [16]. This was performed in duplicate for each N-alkylamide. Briefly, the Caco-

2 cells were grown to a monolayer on 0.4 µm polycarbonate membranes. Transport experiments 

were carried out in both the apical-to-basolateral and the basolateral-to-apical directions. Final 

sample volumes of 0.4 ml apically and 1.2 ml basolaterally for 12-mm filter supports during the 

transport experiment were used. Samples were taken at 15, 30, 60, 90 and 120 minutes from the 

acceptor solution and were immediately replaced by fresh Hank’s balanced salt solution. 

Quantification of the NAAs was conducted using bio-analytical Ultra Performance Liquid 

Chromatography – Mass Spectroscopy (UPLC-MS) techniques. 
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3.3. In vivo blood-brain barrier (BBB) experiment  

3.3. 1. Multiple time regression 

The initial blood-brain barrier rate kinetics were investigated using multiple time regression 

(MTR) in an in vivo mice model [16-18]. Briefly, after mice were anesthetized, the spilanthol 

dose solution was injected in the jugular vein. At specified time points, blood was obtained from 

the carotid artery. Immediately after blood collection, the mice were sacrificed and brains were 

collected.  

 

3.3. 1. Efflux study 

The efflux method was used to study the brain-to-blood transport [16-18]. After mice were 

anesthetized, the spilanthol dose solution was stereotactically injected into the lateral ventricle of 

the brain. Blood was collected from the abdominal aorta at regular time points after which the 

mice were immediately sacrificed and the brains isolated. 

Quantification of the NAAs in brain and serum samples was conducted using bio-analytical 

LC-MS techniques. Sample preparation was first performed using solid-phase extraction (HLB 

oasis µElution 96 well plate). Thereafter, the samples were injected into an Acquity UPLC 

coupled to a MS Xevo™ TQ-S mass spectrometer (Waters) with electrospray ionization source 

and a triple quadrupole mass analyser. A reversed phase C18 Acquity UPLC column was used 

with a water-methanol gradient. 

 

4. RESULTS  

4.1. Permeability through skin and oral mucosa 

When spilanthol was topically applied on buccal mucosa, systemic effects can be expected next 

to local mucosa effects as spilanthol was able to significantly penetrate through buccal mucosa. 

Depending on the formulation applied as dose solution (e.g. as commercially available products, 

ethanolic extract or dissolved in propylene glycol/H2O mixtures), permeability coefficient (Kp) 

values ranging between 5.3 and 47.5 x 10
-3

 cm/h were observed [8].  

Spilanthol penetrates through the human stratum corneum and the viable epidermis as well, 

thereby reaching the dermis and thus the systemic circulation, with Kp values between 0.6 and 

53.3 x 10
-4 

cm/h, depending on i.a. the used dose formulation [9]. An overview of the 

experimentally determined permeability coefficients is given in Table 1.  

 

Table 1: Skin and oral mucosa permeability coefficients of spilanthol in different formulations 

[8,9]  
 

Transmucosal data 

Formulation Receptor fluid 
Kp (x 10

-3
 cm/h) ± SEM  

(n=5-6) 

Indolphar® 

PBS + HPCD 

19.52 ± 1.75 

Buccaldol® 47.53 ± 2.90 

Ethanolic extract 5.28 ± 0.60 

10% PG 10.89 ± 0.42 



Functional Foods in Health and Disease 2014; 4(6):264-275                                                            Page 269 of 275 

 

 

30% PG 11.70 ± 0.94 

Transdermal data 

Formulation Receptor fluid 
Kp (x 10

-4
 cm/h) ± SEM  

(n=3-4) 

65% EtOH 

PBS 4.38 ± 1.41 

PBS + HPCD 4.38 ± 1.42 

EtOH/H2O 0.70 ± 0.12 

10% PG 

PBS 15.34 ± 0.86 

PBS + HPCD 16.62 ± 0.92 

EtOH/H2O 5.46 ± 0.78 

A. Vogel
®
 Spilanthes 

acmella commercial extract 

PBS 3.56 ± 1.09 

PBS + HPCD 4.95 ± 1.65 

EtOH/H2O 0.64 ± 0.16 

10% EtOH 

PBS + HPCD 

37.88 ± 1.82 

30% EtOH 53.29 ± 3.49 

65% EtOH 6.59 ± 1.56 

10% PG 31.50 ± 3.37 

30% PG 22.67 ± 2.49 

65% PG 2.94 ± 0.47 

 

PBS: phosphate buffered saline, PG: propylene glycol, EtOH: ethanol, H2O: water, HPCD: 

hydroxypropyl beta-cyclodextrin.  

 

Similarly, also pellitorine penetrates the human skin, as observed in the experimentally 

determined flux curves (Figure 2) plotting the percentage of the applied dose solution of 

pellitorine permeated through the skin against time [15].  

 

 
Figure 2: Transdermal kinetics of pellitorine (mean ± SEM, n=4) 
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4.2. Gut absorption 

Spilanthol and pellitorine were found to diffuse rapidly through Caco-2 monolayers [16]. 

Transport was observed in both directions, i.e. apical-to-basolateral and basolateral-to-apical 

transport. Figures 3 and 4 show the percentage of the applied dose solution of spilanthol 

permeated through the Caco-2 monolayer against the time (duplicate). Spilanthol is clearly able 

to permeate the Caco-2 monolayer in both directions, with a higher amount of intestinal 

absorption (apical-basolateral) compared to blood efflux (basolateral-apical).   

 

 
Figure 3: Apical-basolateral transport of spilanthol (mean ± SEM, n=2) 

 

 

 
Figure 4: Basolateral-apical transport of spilanthol (mean ± SEM, n=2) 
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The apical-basolateral and the basolateral-apical transport of pellitorine is given in Figures 5 

and 6.  
 

 
Figure 5: Apical-basolateral transport of pellitorine (mean ± SEM, n=2) 

 
 

 
Figure 6: Basolateral-apical transport of pellitorine (mean ± SEM, n=2) 

 

4.3. Blood-brain barrier transport 

Our multiple time regression experiments indicate that spilanthol passes the blood-brain barrier: 

the relationship between the brain/serum concentration ratio and the exposure time is presented 

in Figure 7. A rapid but highly significant influx of spilanthol into the brains is observed, with 

plateauing already after 10 minutes exposure time. 
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                  Figure 7: Brain influx results (MTR in mice)  

 

When investigating the transport of spilanthol out of the brain into the blood, it is confirmed 

that there is also efflux of spilanthol (and no complete brain trapping), possibly explaining the 

rapid plateauing observed at the influx experiment (Figure 8).  

 

 
                  Figure 8: Brain efflux of spilanthol  

 

 

5. DISCUSSION  

In this study, we have shown that plant NAAs like spilanthol and pellitorine can enter the 

systemic circulation via oral, mucosal and dermal administration, after which they could be taken 

up by different organs including the brain, finally potentially interacting with different 

pharmacodynamic targets.  
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these plant-based NAAs (where we will restrict ourselves to the European situation): cosmetics, 

0

100

200

300

400

500

600

700

800

900

0 20 40 60 80 100

C
o

n
c 

b
ra

in
/c

o
n

c 
se

ru
m

 (
µ

l/
g)

 

Exposure time (min) 

0

1

2

3

4

5

6

0 2 4 6 8 10 12 14 16

Ln
 (

b
ra

in
 a

m
o

u
n

t 
in

 n
g)

 

Time (min) 



Functional Foods in Health and Disease 2014; 4(6):264-275                                                            Page 273 of 275 

 

 

nutrients/functional food or medicines to name the most important ones, although they can also 

be part of medical devices as an ancillary substance. According to the EU cosmetics regulation 

1223/2009, cosmetics are defined as any substance intended for placing in contact with various 

external parts of the human body or with the teeth or mucus membranes with the purpose to 

clean, to perfume, to change the appearance and to correct body odours, to protect them or keep 

them in good condition [19]. A point of discussion is the situation where a component passes the 

stratum corneum and reaches viable cells and blood vessels, exerting a biological-

pharmacological function even in the case the purpose of the product was within the cosmetics 

directive. In this situation, it clearly becomes a borderline product between a cosmetic and a 

medicine, where the general principle in case of doubt is towards the most stringent classification 

(i.e. medicine) to safeguard the consumer. A medicinal product is defined in the consolidated 

European directive 2001/83 (for humans) as any substance presented as having properties for 

treating or preventing disease in human beings/animals, or any substance which may be used in 

or administered to human beings/animals either with a view to restore, correct or modify 

physiological functions by exerting a pharmacological, immunological or metabolic action, or to 

make a medical diagnosis [20-21]. In other words, next to the presentation criterion, there is also 

the functionality criterion where data indicate plant NAAs are effectively complying to. This is 

confirmed by the herbal Community monographs (well-established or traditional use) of several 

Echinaceae (Coneflower) species, containing i.a. a mixture of tetraene NAAs, established by the 

Committee on Herbal Products (HMPC) at the European Medicines Agency (EMA). Finally, 

there is also the possible classification as food supplement, nutrient or functional food with 

nutritional and/or health claims (Directive 2002/46, Regulation 1924/2006 and interacting 

directives and regulations like Regulation 907/2013, Regulation 258/97 and Directive 89/398). 

At this moment, no NAA-based products are included in the list in the European claims-register. 

From our own pharmacokinetic results, as well as the available pharmacodynamics literature 

information, it appears that N-alkylamides may currently best be named as cosmenutriceuticals, 

in the cross-region of a cosmetic, functional food nutrient and medicinal product (Figure 9). 

 
Figure 9: NAAs and the different product classes 

 

If more data will become available about this meta-group of biologically active compounds, 

we can expect a shift towards medicines for certain NAAs under well-defined conditions, 

restricting or banning their use in cosmetics or food. 
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6. CONCLUSION  

NAAs are a diverse group of signaling plant-derived secondary metabolites which exhibit 

various functionalities, after administration through various routes. In particular, spilanthol can 

penetrate the buccal mucosa and both spilanthol and pellitorine are able to pass the human 

stratum corneum after dermal application and pass the cells of the Caco-2 monolayer gut-model. 

It has been shown that spilanthol, when present in the general blood circulation, crosses the 

blood-brain barrier, thereby possibly eliciting central nervous system effects. 
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