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ABSTRACT 

Background: Many chronic diseases and illnesses are associated with one or more chronic 

infections, dysfunction of mitochondria and reduced production of ATP.  This results in fatigue 

and other symptoms that occur in most if not all chronic conditions and diseases. 

 

Methods: This is a review of the published literature on chronic infections in neurodegenerative 

diseases and fatiguing illnesses that are also typified by mitochondrial dysfunction.  This 

contribution also reviews the use of natural supplements to enhance mitochondrial function and 

reduce the effects of chronic infections to improve overall function in various chronic illnesses. 

 

Results: Mitochondrial function can be enhanced by the use of various natural supplements, 

notably Lipid Replacement Therapy (LRT) using glyerolphospholipids and other mitochondrial 

supplements.  In various chronic illnesses that are characterized by the presence of chronic 

infections, such as intracellular bacteria (Mycoplasma, Borrelia, Chlamydia and other infections) 

and viruses, LRT has proven useful in multiple clinical trials.  For example, in clinical studies on 

chronic fatigue syndrome, fibromyalgia syndrome and other chronic fatiguing illnesses where a 

large majority of patients have chronic infections, LRT significantly reduced fatigue by 35-43% 

in different clinical trials and increased mitochondrial function.  In clinical trials on patients with 

multiple intracellular bacterial infections and intractable fatigue LRT plus other mitochondrial 

supplements significantly decreased fatigue and improved mood and cognition. 

 

Conclusions:  LRT formulations designed to improve mitochondrial function appear to be useful 

as non-toxic dietary supplements for reducing fatigue and restoring mitochondrial and other 

cellular membrane functions in patients with chronic illnesses and multiple chronic infections. 
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Background 

Patients with chronic neurodegenerative, neurobehavioral and fatiguing illnesses commonly test 

positive for systemic and central nervous system (CNS) bacterial and viral infections [1-3].  In 

addition, other chronic illnesses where neurological manifestations are routinely found, such as 

autoimmune diseases and other chronic illnesses and disorders, also show evidence of systemic 

bacterial and viral infections that could be important in disease inception, progression and/or 

enhancing the types and severities of signs and symptoms [2, 3].   

Evidence of bacterial infections, such as Mycoplasma species, Chlamydia pneumoniae, 

Borrelia burgdorferi, among others, and viruses, such as human herpesvirus (HHV), 

cytomegalovirus (CMV), human herpes viruses (HHV) and other viral infections, have revealed 

high rates of infection in the illnesses listed above that were not found in control populations [1-

3].  Although the specific roles of chronic infections in various diseases and their pathogeneses 

have not been carefully determined, the data suggest that chronic bacterial and/or viral infections 

are common features of essentially all progressive chronic diseases [1-3]. 

Another common finding in chronic illness patients is mitochondrial dysfunction, 

characterized by loss of efficiency in the electron transport chain, reductions in mitochondrial 

inner membrane trans-membrane potential and reductions in the synthesis of high-energy 

molecules such as ATP [4-6].  This is also a characteristic of aging, and it essentially occurs in 

all chronic diseases, including cancer [5-7]. 

This review will concentrate on commonly acquired mechanisms that affect mitochondrial 

function.  To treat functional loss associated wtih chronic infections mitochondrial replacement 

strategies with natural supplements and combinations of natural supplements have been used, 

including vitamins, minerals, enzyme cofactors, antioxidants, metabolites, transporters, 

membrane-type phospholipids and other natural supplements in order to improve mitochondrial 

function. 

 

Introduction 

Chronic infections appear to be a common feature of various diseases, including 

neurodegenerative, psychiatric, neurobehavioral diseases and other conditions [1-3, 8].  Chronic 

infections are also associated with autoimmune diseases [9, 10] and fatiguing illnesses [1, 3, 11].  

This will be discussed in various sections of this review.  In addition, many chronic illnesses are 

directly caused by chronic infections, such as Lyme disease, brucellosis, babesiosis, and other 

infection-based chronic diseases [2, 12-14]. 

Chronic infections collectively result in induction of excess Reactive Oxygen Species (ROS) 

and Reactive Nitrogen Species (RNS) that damage cellular structures, especially mitochondrial 

membranes [15-17].  Mitochondria are especially sensitive to excess levels of ROS/RNS, and in 

chronic illnesses there is extensive damage to mitochondria in the form of membrane oxidation, 

damage to mitochondrial DNA (mtDNA) and loss of mitochondrial enzymatic function and inner 

mitochondrial membrane potential [6-8, 18-20].  In this review we will discuss the use of 
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comprehensive approaches to restore mitochondrial function damaged by infections and other 

causes. 

Patients with chronic illnesses (often caused by or exacerbated by chronic infections) are 

particularly difficult to treat using single modality approaches, and this is particularly true for 

patients who have multiple chronic infections [21, 22].  The multi-focal nature of chronic 

diseases and the fact that often treatments are given to suppress adverse signs and symptoms, 

rather than treat causes of the disease or its progression, have resulted in incomplete or 

ineffective treatments.  On the other hand, even if the causes of chronic diseases are known, by 

the time therapeutic interventions are undertaken, it may be entirely too late to use approaches 

that might work on the disease at an early stage or if chronic infections were not also present.  At 

the stage(s) of disease when patients usually seek medical care for their conditions, they usually 

have multiple problems, including chronic infections, and each of these problems usually 

requires complex therapeutic approaches.  Their multiple chronic infections also cause additional 

cellular damage [1, 2, 8].   

Multiple alternations in mitochondrial membranes, proteins and mtDNA are thought to be 

the cause for mitochondrial dysfunction, and this damage can also accumulate over time [6, 23].  

By the time patients seek care, they usually have multiple defects in their mitochondria, and thus 

there are no simple approaches that are effective in promoting functional recovery of their 

mitochondria.  With this in mind, we have begun this review by discussing the evidence for 

chronic infections and mitochondrial dysfunction in selected chronic illnesses and diseases.  

Then we will discuss the role that various supplements play in restoring mitochondrial function, 

even in patients with multiple chronic infections that continue to degrade mitochondrial 

components.  Finally we will discuss the role of combination supplements for restoring 

mitochondrial function in patients with chronic illnesses and multiple chronic infections.   

  

Neurodegenerative Diseases 

Neurodegenerative diseases, or chronic degenerative diseases of the central nervous system 

(CNS) that cause dementia, are mainly diseases of the elderly [1, 2].  On the other hand, 

neurobehavioral diseases are found mainly in young patients and include autism spectrum 

disorders (ASD), such as autism, attention deficit disorder, Asperger’s syndrome and other 

disorders [24].  For the most part, the causes of these neurological diseases remain largely 

unknown but it is thought that multiple factors are involved in each disease [1, 2].
 
  

Neurodegenerative diseases are characterized by molecular and genetic changes in nerve 

cells that result in nerve cell dysfunction, degeneration and ultimately cell death, resulting in 

neurological signs and symptoms and eventually dementia [1, 2].  In contrast, neurobehavioral 

diseases are related to fetal brain and early post-partum development but are less well 

characterized at the cellular level.  Both of these disease types involve genetic and environmental 

factors [24, 25], and they also have multiple chronic infections [1-3, 26, 27].  Even less well 

characterized at the cellular and genetic level are the psychiatric disorders, such as 

schizophrenia, paranoia, bipolar disorders, depression and obsessive-compulsive disorders, but 

these diseases are also associated with the presence of chronic infections [3]. 

Genetic alternations have been found in neurodegenerative and neurobehavioral diseases, 

but the genetic changes as well as changes in gene expression that have been found are complex 
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and usually not directly related to simple gene alterations, such as single mutations and deletions, 

that lead to single protein molecule alterations [24, 25, 28].  Importantly, mutations that affect 

mitochondrial function are known to be associated with neurodegenerative and neurobehavioral 

diseases [29, 30].  These include mutations in mtDNA as well as nuclear DNA [29].  In addition 

to chronic infections and genetic changes, environmental toxins, heavy metals, nutritional 

deficiencies, autoimmune immunological responses, vascular diseases, head trauma (and 

accumulation of fluid in the brain), changes in neurotransmitter concentrations, among other 

elements, are thought to be collectively involved in the pathogenesis of various 

neurodegenerative and neurobehavioral diseases [1, 2, 24-31].  These important topics will not 

be discussed in detail in this review. 

Chronic Infections are important factors in neurodegenerative and neurobehavioral diseases, 

and infectious agents may enter the brain within infected migratory macrophages.  Alternatively, 

they can also gain access by direct penetration of the blood-brain-barrier or entry by 

intraneuronal transfer from peripheral nerves [32].  Cell wall-deficient bacteria, such as species 

of Mycoplasma, Chlamydia (Chlamydophila), Borrelia, Brucella, among others and various 

viruses are candidate brain infectious agents, because they are capable of CNS penetration and 

have been found routinely in neurodegenerative and neurobehavioral diseases [1-3, 26, 27, 32, 

33].  Such infections are usually systemic and can affect immune systems and essentially any 

organ system, resulting in a variety of systemic signs and symptoms that are not limited to the 

CNS [10, 11, 26, 27, 32, 33]. 

  

Amyotrophic lateral sclerosis (ALS) 

ALS is an adult-onset, progressive neurodegenerative disease of unknown etiology that affects 

both central and peripheral motor neurons where patients show gradual progressive weakness 

and paralysis of muscles due to destruction of upper motor neurons in the motor cortex and lower 

motor neurons in the brain stem and spinal cord [34, 35].  Eventually this results in death, usually 

by respiratory failure [35]. 

Chronic infections in ALS, such as the finding of enterovirus sequences in a majority of 

ALS spinal cord samples by polymerase chain reaction (PCR) [36], have attracted widespread 

attention.  However, others have failed to detect enterovirus sequences in ALS spinal cord 

samples [37]. Using PCR methods systemic mycoplasmal infections have been found in a high 

percentage (83%) of ALS patients [38].  For example, all of the tested Gulf War veterans 

diagnosed with ALS from three nations had systemic mycoplasmal infections [38].  In addition, a 

majority of ALS patients in Lyme endemic areas show immunological evidence of Borrelia 

infections [39], and some patients diagnosed with ALS were subsequently found to have 

neuroborreliosis infections [40].  Although high rates of infection may occur in certain regions, 

the overall rate of Borrelia infections in ALS is low (10% or less) in North America [41].  

MacDonald [42], however, observed a high incidence of spirochetal forms in the brain tissues of 

ALS patients and in patients with other neurodegenerative diseases, suggesting that the presence 

of chronic bacterial infections in the CNS of neurodegenerative diseases patients is much more 

common than previously assumed.  

ALS patients also show evidence of other infections.  These include: human herpes virus-6 

(HHV-6), Chlamydia pneumoniae, cyanobacteria and other infections [43-45].  Chronic 
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infections plus other defects (accumulation of glutamate causing excitotoxicity, deficiency of 

nerve growth factor, autoimmune reactions against motor neurons and dysfunction of 

mitochondrial superoxide dismutase) have been proposed to be important in ALS pathogenesis 

[review: 2]. 

 Mitochondrial dysfunction is a common feature of ALS and animal models of ALS [46, 

47].  Evidence from patients with sporadic and familial ALS and from ALS models based on the 

over-expression of mutant SOD1 found in a small subset of patients, clearly point to 

mitochondrial damage as a relevant facet of this neurodegenerative condition [46].  In addition to 

mutations in superoxide dismutase genes, some ALS patients present with mutations in 

mitochondrial transport genes and misfolding in inclusion proteins, ubiquilin-2 and other 

mitochondrial associated proteins [review: 47].  Dysfunction in several other cellular 

mechanisms, including mitophagy, oxidative stress, lipid peroxidation and cholesterol 

esterification, protein and neurofilament aggregation, impaired axonal transport, among other 

changes in ALS patients have been reviewed recently [47, 48]. 

 

Multiple Sclerosis (MS) 

The most common demyelinating neurological disease is MS [49].  MS can occur in all age 

groups as a cyclic (relapsing-remitting) or a progressive disease that continues progressing 

without remitting [49].  Inflammation and the presence of autoimmune antibodies against myelin 

and other nerve cell antigens are thought to cause myelin sheath breakdown, resulting in 

decrease or loss of electrical impulses along nerve fibers [49, 50].  In the MS patients with 

progressive neurological symptoms damage occurs additionally by the deposition of plaques on 

nerve cells to the point where nerve cell death occurs.  Importantly, breakdown of the blood-

brain barrier in the CNS of MS patients is associated with local inflammation caused by 

activated glial cells [49, 50].  The combination of demyelinization, plaque damage and blood-

brain barrier disruption causes multiple, variable symptoms, but they usually include impaired 

vision, alterations in motor, sensory and coordination nerve systems along with cognitive 

dysfunction [50]. 

MS is a disease in which environmental, genetic and epigenetic factors determine the risk of 

developing MS, its progression and responsiveness to treatment [51, 52].  Just as in ALS, there 

are multiple genetic components in MS [51, 53].  Although it has been established that there is a 

genetic basis to MS susceptibility, epidemiological and twin studies suggest that MS is basically 

an acquired disease with some genetic and environmental components [54]. 

The molecular mechanisms through which environmental signals are translated into changes 

in gene expression include: DNA methylation, post-translational modification of nucleosomal 

histones, and non-coding RNAs.  These mechanisms are regulated by families of specialized 

enzymes that are tissue-selective and cell-type specific [54]. 

Chronic infections have been linked to the pathophysiology of MS [55, 56].  For example, 

MS patients show immunological and cytokine elevations consistent with chronic infections [57, 

58].  An infectious basis for MS has been under examination for some time, and patients have 

been tested for various viral and bacterial infections [1, 3, 53, 55, 56].   

One of the most consistent findings in MS patients has been the presence of C. pneumoniae 

antibodies and DNA in their cerebrospinal fluid [59-61].  By examining relapsing-remitting and 
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progressive MS patients for the presence of C. pneumoniae in cerebrospinal fluid by culture, 

PCR and immunoglobulin reactivity Sriram et al. [60] were able to identify C. pneumoniae in 

64% of MS cerebrospinal fluid versus 11% of patients with other neurological diseases.  They 

also found high rates of PCR-positive MOMP gene (97%) in MS- patients (versus 18% in other 

neurological diseases), and this correlated with a high rate of patients being serology-positive 

(86%) for Chlamydia antigens by ELISA and Western blot analysis [60]. MS patients examined 

for oligoclonal antibodies against C. pneumoniae revealed that 82% of MS patients were positive 

compared to none of the control non-MS neurological patients [61].  Similarly, C. pneumoniae 

RNA and DNA transcripts were found in mononuclear cells and cerebrospinal fluids of 64.2% of 

MS patients but in only 3 controls [62].  

The brain tissues of MS and non-MS neurological patients have also been examined for C. 

pneumoniae antigens [63].  Using immunohistochemistry to find C. pneumoniae antigens in 

formalin-fixed brain tissue Sriram et al. [63] found that in a subset of MS patients (35%) 

Chlamydial antigens were localized to ependymal surfaces and pariventricular regions.  Positive 

reactions were not found in brain tissue samples from other neurological diseases.  PCR 

amplification of C. pneumoniae genes was accomplished in 63% of brain tissue samples from 

MS patients but none in frozen brain tissues from other neurological diseases.  In addition, using 

immuno-electron microscopy the sediment from cerebrospinal fluid was examined for 

Chlamydial antigens [63].  Sriram et al. [63] found that the electron dense bodies resembling 

bacterial structures that were positive by immuno-electron microscopy correlated with tissue 

PCR-positive MS cases (91% positive using both methods).   

Using different nested PCR methods to examine additional C. pneumoniae gene sequences 

in the cerebrospinal fluid of 72 MS patients Contini et al. [64] were able to match these results to 

MS-associated lesions seen by MRI.  Grimaldi et al.
 
also used MRI to link the presence of C. 

pneumoniae infection with abnormal MRI results and found linkage in 21% in MS patients [65].  

The MS patients with C. pneumoniae infections were also the MS patients with more progressive 

disease.  Indeed, higher rates of C. pneumoniae transcription were found in the cerebrospinal 

fluid of 84 patients with the more progressive form of MS [66].  These studies strongly support 

the presence of C. pneumoniae in the brains of MS patients with progressive disease [67, 68].  

Not all researchers have found C. pneumoniae
 
or other bacteria

 
in the brains of MS patients 

[69, 70].  For example, Hammerschlag et al. used nested PCR and culture to examine frozen 

brain samples from MS patients but could not find any evidence for C. pneumoniae gene 

sequences [71].  Thus the evidence linking C. pneumoniae infection with MS is not universally 

accepted, and other genetic changes may be necessary to complete the link between such 

infections and the etiology of MS [72].  

 Multiple infections in MS patients may complicate the evidence linking MS with specific 

chronic infections.  Thus other infections similar to C. pneumoniae could be involved rather than 

just one specific infection [1].  In addition to C. pneumoniae, MS patients could also have 

Mycoplasma species, B. burgdorferi and other bacterial infections as well as viral infections [73].  

When multiple infections are considered, it is likely that >90% of MS patients have obligate 

intracellular bacterial infections. 
 

 
Various viruses have also been found in MS patients.  For example, HHV-6 has been found 

at higher frequencies in MS patients, but this virus has also been found at lower incidence in 
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control samples [74].  PCR was used to examine postmortem brain tissue and controls for the 

presence of various neurotrophic viruses [74].  These studies revealed that 57% of MS cases and 

43% of non-MS neurological disease controls contain sequences for HHV-6, whereas 37%, 28%, 

and 43%, respectively, contained sequences for herpes simplex virus (HSV)-1 and –2 and 

varicella zoster virus.  Although impressive, the data did not achieve statistical significance.  

They also found that 32% of the MS active plaques and 17% of the inactive plaque areas were 

positive for HHV-6 [74].   

Using sequence difference analysis Challoner et al. searched for pathogens in MS brain 

specimens and found that >70% of MS patients were positive for infection-associated sequences 

[76].  They also used immunocytochemistry and found positive staining around MS plaques 

more frequently than around surrounding white matter.  Additionally, HHV-6 DNA was found in 

peripheral leukocytes in the systemic circulation of MS patients [77] but not in every study [78]. 
 

 Examination of the literature strongly suggests an infectious process in MS [1, 55, 56, 79, 

80].  In most studies the more progressive forms of MS rather than the relapsing-remitting forms 

of MS were associated with chronic infections.  Thus chronic infections may play a role in 

progression of MS.  If infections like C. pneumoniae and Mycoplasma species are important in 

MS, then antibiotics effective against these infections should improve clinical status [1].  This 

has, in fact, been seen in most but not in all MS patients [81].
 
 As in other neurodegenerative 

diseases, multiple factors appear to be involved in the pathogenesis of MS [1, 49, 55, 56, 82].  

One of the factors in MS appears to be mitochondrial dysfunction due to oxidative injury 

[83, 84].  Broadwater et al. have identified several MS-related damaged mitochondrial proteins 

that are involved in respiration, including cytochrome c oxidase subunit 5b, an isozyme of 

appears to be damage to the permeability transition pore (PTP) by excess reactive oxygen species 

(ROS) [86].  This critical structure is central to mitochondrial dysfunction by allowing ion 

dysregulation within neural cells that drives neurodegeneration by allowing the PTP to change 

the ion gradients inside mitochondria, lowering inner membrane trans-membrane potential (thus 

reducing oxidative phosphorylation [87]), promoting matrix expansion leading to release of 

cytochrome c and initiating cell death programs [86].  In addition, the energy and calcium 

balance in neurons plays an important role in maintaining a healthy myelin sheath, and a 

hallmark of MS is axon demyelation due to mitochondrial dysfunction [83], which drives an 

inflammatory response characteristic of MS progression [88]. 

 

Alzheimer’s disease (AD) 

AD is characterized by distinct pathological changes in brain cells and tissues [1, 2].  Among the 

most notable are the appearance of plaques and tangles of neurofibrils in brain nerve cells that 

affect synapses and nerve-nerve cell communication.  These alterations involve the deposition of 

altered amyloid proteins [89, 90].   Although the origins of AD are not known for certain, the 

formation of the amyloid plaques and neurofiber tangles found in AD may be due to genetic 

defects and resulting changes in the structure of beta amyloid proteins, which may be caused by 

chemicals or other toxic events, inflammatory responses, excess oxidative stress and increases in 

ROS, loss of nerve trophic factors and reductions in nerve cell transmission [89-92].
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Infections are potentially important in the AD disease process [93, 94].  One pathogen that 

has attracted considerable attention because of its neurotropism is C. pneumoniae [95, 96].  This 

intracellular bacterium has been found at high incidence in the brains of AD patients by PCR and 

immunohistochemistry [96].  C. pneumoniae has also been found localized in nerve cells in close 

proximity to neurofibrillary tangles, a characteristic of AD [96, 97].   

C. pneumoniae can invade endothelial cells and promote the transmigration of monocytes 

through human brain endothelial cells into the brain parenchyma [98].  C. pneumoniae has been 

found in the brains of most AD patients [95],
 
and it has been cultured from the brain tissue of AD 

patients [99].  Immunohistological detection of C. pneumoniae was observed inside and outside 

cells in the frontal and temporal cortices of AD brains [100].  Indeed, in experiments with mice 

injection of C. pneumoniae stimulated brain beta amyloid plaque formation [101].  The data are 

compelling, but some investigators have not been able to duplicate the findings on infections in 

AD [102]. 

In addition to C. pneumoniae investigators have found other infections in AD patients, such 

as B. burgdorferi [103, 104].   Using serology, culture, Western blot and immunofluorenscence 

methods this infection has been examined in AD patients (with or without a diagnosis of Lyme 

disease) and found to be present [104, 105].  The presence of intracellular infections like B. 

burgdorferi in AD patients has been proposed to be a primary event in the formation of AD beta 

amyloid plaques, which are thought to occur by the formation of ―congophilic cores‖ that attract 

beta amyloid materials [106].  In fact, exposure of glial and neuronal cells in vitro to Borrelia 

burgdorferi spirochetes and to the inflammatory bacterial lipopolysaccharide LPS caused 

morphological changes analogous to those found in deposits in AD brains [107].  Also detected 

were increases in beta amyloid precursor protein and hyperphosphorylated tau protein 

characteristic of AD [107].  Several reports indicate that AD nerve cells are often positive for B. 

burgdorferi, indicating that this intracellular bacteria could be important in the pathogenesis of 

AD [103-106, 108].  However, there are reports that could not find evidence for the presence of 

Borrelia in AD brain tissue [109].   

Miklossy has reviewed the data indicating that chronic infections, including B. burgdorferi, 

are commonly found in AD patients and has concluded that intracellular bacteria contain 

amyloidogenic proteins that can induce amyloid beta deposition and tau phosphorylation [110, 

111].  In addition, specific bacterial ligands and bacterial and viral DNA and RNA increase the 

expression of proinflammatory molecules that activate the innate and adaptive immune systems.  

Evasion of brain pathogens from destruction by the host immune system can result in persistent 

infection, chronic inflammation, neuronal destruction and beta amyloid deposition [111].
 

The hypothesis that intracellular microorganisms or their protein products can induce beta 

amyloid protein and then provide ―nucleation sites‖ for the attraction of beta amyloid materials is 

attractive [111], but other factors, including the induction of reactive oxygen species, lipid 

peroxidation and the breakdown of the lysosomal membranes releasing lysosomal hydrolases, 

are also thought to be important in beta amyloid deposition [108].  An infectious basis in AD 

pathogenesis is attractive; however, although some negative reports imply that infections like B. 

burgdorferi are not essential in AD pathogenesis [109].  On the other hand, other intracellular 

bacterial infections (Mycoplasma, Chlamyda, Helicobacter etc.) have been found in AD patients 

and could be present in those patients who are negative for Borrelia infections [111-113].  It has 
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been proposed that chronic infections may be important cofactors in AD and contribute to the 

pathogenic process [113]. 

Viral infections may also play a role in AD pathogenesis.  Herpes virus infections, 

especially HSV-1, have been found in AD patients [114, 115].  Previously it was determined that 

HSV-1 but not a related neurotrophic virus (varicella zoster virus) was present more often in AD 

brains, and this could be linked to patients who have the AD risk factor ApoE e4 allele [116, 

117].  Similar to bacterial proteins, HSV-1 proteins may also be involved in the abnormal 

aggregation of beta amyloid fragments within the AD brain, but in this case by reducing the 

amount of full-length beta amyloid precursor protein and increasing the amounts of their 

fragments [118].  HSV-1 infection of glial and neuronal cells resulted in a dramatic increase in 

the intracellular levels of beta amyloid forms, whereas the levels of native beta amyloid 

precursor protein decreased [119].  This has been found in mice infected with HSV-1, indicating 

that HSV-1 is probably involved directly in the development of senile-associated plaques.  Other 

herpes viruses, such as HHV-6, have also been found in AD patients, but it is thought that this 

virus is not directly involved in AD pathogenesis.  Another virus that has been implicated in AD 

is cytomegalovirus [120].  A high proportion of brains from vascular dementia patients show 

evidence of both HSV-1 and cytomegalovirus [120].
 

Mitochondrial dysfunction may be an early event in the pathogenesis of AD [121-123]. AD 

patients show impairments in mitochondrial function that start early in process of 

neurodegeneration [121, 123].  Mutations in the AbetaPP and tau genes induce oxidative stress 

and mitochondrial dysfunction leading eventually to apoptotic cell death [124].  Indeed, 

transgenic mouse models of AD point to impairments in oxidative phosphorylation as an 

important aspect of AD pathogenesis [125].  The oxidative stress is thought to cause protein 

alterations that have synergistic effects on mitochondria, leading to synaptic dysfunction and 

apoptotic cell death [124]. 

 

Parkinson’s Disease (PD) 

PD is characterized by akinesia, muscular rigidity and tremor.  In addition, autonomic 

dysfunction, olfactory disturbances, depression, sensory and sleep disturbances and frequently 

dementia characterize this disease [126].  The pathology indicates a progressive loss of the 

-

synuclein.  Extensive brain degeneration also occurs in PD [127].  Inclusion bodies and protein 

aggregations or defects in their degradation characteristically are characteristic of PD, but their 

role in PD pathogenesis is unclear [127, 128].  Available evidence suggests a relationship 

between PD and specific genetic changes, such as changes in the genes in mitochondria, those 

affecting protein degradation, organelle trafficking and vesicular fusion, and in proteins involved 

in oxidative stress or antioxidant function [129. 130].  Inflammation has also been associated 

with PD [131]. 

PD has been proposed to be due to neurotoxic events in genetically susceptible individuals 

that are especially sensitive to neuro-oxidative damage [132].  Multiple environmental factors 

and genetic background are also statistically related risk factors for PD [133].  The mitochondria 

in neuromelanin-containing dopaminergic neurons of the substantia nigra are the targets for 

oxidative damage [128, 133, 134], and early life exposures are also important [135].  For 
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example,
 
early life exposure to brain injury, chemicals and/or infections may initiate a cyclic 

inflammatory process involving oxidative damage, excitotoxicity, mitochondrial dysfunction and 

altered proteolysis that later in life results in neuron death in the substantia nigra [136, 137]. 

Chronic infections have been proposed as important in PD pathogenesis [136, 137].  In fact, 

regression analysis of a case-control study on infections in PD patients clearly showed that 

infectious processes are an important risk factor in PD [138].  One infection found in PD that has 

aroused considerable interest is the presence of chronic gastrointestinal Helicobacter pylori 

infections [139].  Treatment of this infection in PD patients offered relief from late stage 

cachexia [140].  Helicobacter pylori-infected PD patients also showed reduced L-dopa 

absorption and increased clinical disability [141], and in antimicrobial-treated PD patients there 

was increased L-dopa absorption and decreased clinical disability [142].  Although H. pylori 

may not be directly involved in the pathogenesis of PD, its systemic presence has been proposed 

to affect the progression and treatment of PD [141]. 

PD patients’ chronic infections have been linked to autoimmunity and inflammation  [143-

145], and the role of neuro-inflammatory and oxidative processes in nigral degeneration has 

gained increasing attention [145, 146].   Moreover, experimental models of PD have been 

developed using viral or bacterial infections to initiate the pathogenic process [147, 148].  In 

examining PD patients various infections have been found, especially bacterial and viral 

infections [144, 149].  For example, spirochetes have also been found in the brain Lewy bodies 

of Lyme-associated PD patients [150].  Other infections, such as viral encephalitis [151], 

cornavirus [152],  Mycoplasma pneumoniae [153], AIDS-associated infections of the basal 

ganglia [154], HIV [155], among other infections, have been found in PD patients [144, 149, 

155].  Additional research will be necessary to establish whether a causal link exists between PD 

and chronic infections [143, 155, 156]. 

A common link between oxidative stress, mitochondrial dysfunction and PD exists [157, 

158].  Although the underlying mechanisms for selective dopaminergic nerve degeneration in PD 

are not completely known, the increase in ROS in Parkinson’s substantia nigra neurons results in 

increased DNA mutation, especially in mtDNA, reduced efficiency of the electron transport 

chain, and changes in protein aggregation and lipid oxidation that contribute to mitochondrial 

destruction (mitophagy) and neurodegeneration [132, 145, 156-158].   Mutations in genes that 

protect neural cells from oxidative damage-mediated mitochondrial dysfunction, such as tensin 

(PTEN) homologue-induced kinase-1 (PINK1), are known to be associated with recessively 

inherited PD, and this also points to mitochondrial damage as an underlying defect in PD [159].  

PINK1 is involved in mitochondrial quality control, and under steady state conditions PINK1 is 

rapidly and constitutively degraded in a mitochondrial membrane potential-dependent manner 

[160].  Loss of mitochondrial inner membrane potential stabilizes PINK1 mitochondrial 

accumulation and stimulates the initiation of autophagic degradation and removal of damaged 

mitochondria (mitophagy), but mutations in PINK1 inhibit this process [161].  This implicates 

loss of mitochondrial integrity and mitophagy in the pathogenesis of PD. 

  

Neurobehavioral Diseases 

Autism spectrum disorders (ASD) 
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ASD includes autism, Asperger’s syndrome, among other disorders. These diseases affect 

primarily young patients who generally suffer from an inability to properly communicate, form 

relationships with others and respond appropriately to their environment.  ASD patients do not 

all share the same signs and symptoms but tend to have in common certain social, 

communication, motor and sensory problems (non-compliance, hyperactivity, sensory 

defensiveness, self-injury, among others) that affect their behavior. They can display repetitive 

actions and develop troublesome fixations with specific objects, and they are often painfully 

sensitive to certain sounds, tastes and smells [162, 163]. 

Multiple factors appear to be involved in ASD, including genetic factors, environmental 

exposures, such as heavy metals and chemicals and biological exposures, which are probably 

different in each patient [27, 28, 164-169].  ASD patients appear to have similarities in genetic 

defects and environmental exposures that have been proposed to play interactive roles that are 

probably important in patient morbidity or in illness progression [170, 171]. 

 Chronic infections appear to be an important element in the development of ASD [2, 26, 27, 

168, 169].  In ASD patients more than 50 different bacterial, viral and fungal infections have 

been documented [27].   A few of these occur at high incident rates and may be more important 

than others in causing ASD symptoms [2, 169].  ASD patients also present with a number of 

nonspecific chronic signs and symptoms that suggest infections, such as fatigue, headaches, 

gastrointestinal and vision problems as well as intermittent low-grade fevers and other signs and 

symptoms [169, 172].  Increased titers to various viruses as well as bacterial and fungal 

infections have been commonly seen in ASD patients [27, 169, 172-174].  

Infections along with environmental exposures to chemicals and heavy metals is 

controversial but in some cases may be important in the development of ASD in genetically 

susceptible children [27, 28,166-174].  The relationship between ASD and heavy metals is 

controveral but could be linked to the multiple vaccines given during pre-school years [166, 

167].  ASD often developes only after multiple childhood immunizations, and the sharp increase 

in Autism may be linked to vaccines after they came into widespread use [167].  Many of these 

vaccines contain mercury and other toxic preservatives, and some may also contain 

contaminating bacteria, as found in 6% of veterinary vaccines [175].  ASD is also related to 

environmental infections, such as Lyme Borrelia and associated co-infections [21, 27, 169, 174]. 

An interesting study on the transmission of infections and subsequent ASD has come from 

the families of veterans of the Gulf War [176, 177].  After veterans with Gulf War Illness 

returned to the home, their children subsequently became symptomatic, and these children were 

often diagnosed with ASD [178].  Symptomatic children with ASD were infected with the same 

Mycoplasma species, M. fermentans, that was found in the veterans and their symptomatic 

family members, and this was not seen in aged-matched control subjects or in military families 

without GWI.  In these families some non-symptomatic family members did have mycoplasmal 

infections (~10%), but this was not significantly different from the incidence of mycoplasmal 

infections in healthy control subjects [177, 178]. 

Non-military families were also examined for systemic mycoplasmal infections [26].  In the 

ASD cases a majority were positive for mycoplasmal infections.  In contrast to the children from 

military families who for the most part had only M. fermentans, the civilian children tested 

positive for a variety of Mycoplasma species [26].  For example, a large subset (>58%) of ASD 
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patients showed evidence of Mycoplasma infections compared to age-matched control subjects 

(Odds Ratio=13.8, p<0.001).  ASD patients were also examined for C. pneumoniae (8.3% 

positive, Odds Ratio=5.6, p<0.01) and HHV-6 (29.2% positive, Odds Ratio=4.5, p<0.01). The 

results indicated that a large subset of ASD patients have bacterial and/or viral infections (Odds 

Ratio=16.5, p<0.001) [26].
 

In addition to Mycoplasma infections, many ASD patients have B. burgdorferi infections 

[179].  Various studies revealed that 22-30% of ASD patients have Borrelia infections [169].  

The incidence of Borrelia infections in ASD patients may be related to Lyme disease 

distribution, and other Lyme-associated infections, such as Bartonella, Babesia, Ehrlichia, may 

also be present in ASD patients [169]. 

 Mitochondrial dysfunction is a common finding in ASD [180, 181].  Many mitochondrial 

biomarkers were significantly different between ASD patients and controls, and some markers 

correlated with ASD signs and symptoms severity [181].  Because of the similarities in 

symptoms, mitochondrial dysfunction in ASD patients may be related to non-ASD mitochondrial 

disease [181].  In addition, there was also an association between ASD and immune 

dysregulation and inflammation, oxidative stress, and toxicant exposures [182].  Palmieri and 

Persico have proposed that mitochondrial dysfunction in ASD is a down-stream affect, since it 

cannot be directly linked to many genetic or genomic defects found in ASD patients.  Thus 

mitochondrial dysfunction in ASD may be due to the consequences of dysreactive immunity or 

altered calcium signaling [183]. 

 

Fatiguing Illnesses 

Fatigue is usually understood as a subjective loss of energy and inability to perform even simple 

tasks without exertion.  It is the most common complaint of patients seeking general medical 

care  [184, 185].  Fatigue occurs naturally during aging, and it is also an important secondary 

condition in many clinical illnesses, including respiratory, coronary, musculoskeletal, and bowel 

conditions as well as infections [184-186].  

 

Chronic Fatigue Syndrome (CFS) 

Chronic fatigue lasting more than 6 months that is not reversed by normal sleep along with other 

signs/symptoms (including neurophysiological) usually indicates CFS [187, 188].  CFS patients 

also display immune abnormalities, inflammation, autonomic dysfunction and impaired 

functioning of the hypothalamic-pituitary-adrenal axis [189-191].  This results in alternations in 

immune cells, such as natural killer cells, and release of pro-inflammatory cytokines [191-195].  

Most CFS patients have multiple chronic bacterial and viral infections [196-200].  A 

common finding was systemic Mycoplasma species [197, 200].  For example, when patients 

were examined for evidence of any multiple, systemic bacterial and viral infections, the odds 

ratio for this was found to be 18 (CI 95% 8.5-37.9, p<0.001) [197].  In addition to Mycoplasma 

species (OR=13.8, CI 95% 5.8-32.9, p<0.001), co-infections with C. pneumoniae (OR=8.6, CI 

95% 1.0-71.1, p<0.01) and HHV-6 (OR=4.5, CI 95% 2.0-10.2, p<0.001) were also found [197].  

The presence of these infections was also related to the number and severity of signs and 

symptoms [201].  Similarly, Vojdani et al. also found Mycoplasma species in a majority of 

CFS/ME patients [200], but this has not been seen in all studies [202].  Regional differences may 



Functional Foods in Health and Disease 2014; 4(1):23-65                                                                    Page 35 of 65 

 

be important, because when European CFS patients were examined for various Mycoplasma 

species, the most common species found was M. hominis [203], whereas in North America the 

most common species found was M. pneumoniae [197, 201].  

CFS patients are also often found to be infected with B. burgdorferi [204], C. pneumoniae 

[197, 201, 205], cytomegalovirus [206], B19 parvovirus [207] and HHV-6 [197, 201, 208].  

However, not all studies on infections in CFS patients have been accurate. A recent finding of a 

retrovirus (XMRV) in CFS patients has been proven to be an artifact [209]. 

As with other diseases that show high rates of chronic infections, CFS patients are also 

dysfunctional in their mitochondria [210, 211].  Studies have shown deficiencies in ATP 

production [210, 211] and reduced mitochondrial inner membrane potential [212] in white blood 

cells from CFS patients. Myhill et al. have proposed that CFS patients have basically two types 

of mitochondrial impairments: substrate or co-factor deficiencies or defects caused by exogenous 

or endogenous mitochondrial toxic factors [213].  Intracellular infections are likely the most 

common cause of the latter type of mitochondrial dysfunction. 

 

Fibromyalgia (FM) 

FM has many signs and symptoms in common with CFS, such as debilitating fatigue, mood and 

cognitive changes and sleep disturbances, but FM patients also present with widespread pain and 

abnormal pain processing [214, 215].  Among the risk factors for FM include genetic 

predisposition, obesity, allergies, toxins, autoimmune responses, physical trauma and chronic 

infections [215, 216].  Up to 70% of FM patients are also diagnosed with CFS  [217]. 

As with CFS, a high incidence of chronic bacterial and viral infections have been found in 

FM patients [2, 215].  Among the most commonly found infections are due to intracellular 

bacteria, such as Mycoplasma, Chlamydia, Brucella and Borrelia (reviewed in [215]).  Similarly, 

viral infections have also been noted, such as cytomegalovirus, enteroviruses and HHV-6 

(reviewed in [215]).  These infections are often found at the same or higher incidence rates as 

those found in CFS patients. 

Autoantibodies are routinely found in FM patients. One study reported thyroid 

autoantibodies in 41% of FM patients versus 15% of controls [218], and another report indicated 

34.4% of FM patients were positive versus 18.8% in controls (p=0.025) [219]. Autoantibodies to 

serotonin were also identified in 74% of 50 patients with FM compared with 6% of 32 controls 

[220]. 

As with CFS, FM patients show dysfunctional mitochondria [221, 222].  Excess oxidative 

stress was indicated by lipid peroxidation in blood mononuclear cells and plasma from FM 

patients [222].  In addition, reduced inner mitochondrial membrane potential initiating 

mitophagy and reductions in functional mitochondria were also found, suggesting that oxidative 

stress and increased mitophagy may play a role in the pathophysiology of FM [222].  Similar to 

CFS patients, FM patients also show reduced production of ATP but there were also some 

differences between CFS and FM patients.  In FM patients lower levels of citrate synthase and 

other enzymes and lower amounts of mtDNA were found compared to CFS patients [223]. 
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Consequences of Mitochondrial Dysfunction  

Mitochondrial dysfunction arises from an inadequate number of mitochondria within cells, an 

inability to provide necessary substrates and cofactors to mitochondria, and dysfunction in their 

electron transport or ATP synthesis machinery.  The number and functional status of 

mitochondria in a cell can be changed by the fusion of partially dysfunctional mitochondria and 

mixing of undamaged components to improve overall function (mitophagy), the generation of 

entirely new mitochondria (fission), and the removal and complete degradation of dysfunctional 

mitochondria (autophagy) [224].  These events are controlled by complex cellular processes that 

sense the deterioration of mitochondria, such as the loss of inner mitochondrial membrane 

potential
 
or the activation of certain transcription pathways [225]. 

The ability of mitochondria to produce high-energy molecules like ATP is directly related to 

the ability of the electron transport chain to convert the energy of metabolites to transfer 

electrons to the electron transport chain from NADH and eventually to molecular oxygen while 

pumping protons from the mitochondrial matrix across the inner mitochondrial membrane to the 

intermembrane space [225].  This creates a transmembrane proton gradient (∆p) and 

elect m) across the mitochondrial inner membrane that is used by ATP 

synthase to generate ATP [226].  

As a consequence of the electron transport process highly reactive free radicals, such as 

Reactive Oxygen Species (ROS), are produced as a byproduct of oxidative phosphorylation. The 

main cellular sources of ROS and related Reactive Nitrogen Species (RNS) are mitochondria, 

and when produced in excess over cellular antioxidant systems these free radicals can damage 

cellular lipids, proteins and DNA [227-229].  There are cellular mechanisms to neutralize excess 

ROS/RNS, such as dismutase enzymes and antioxidants [230].  Another mechanism to control 

the amount of excess ROS is by a controlled leak of protons back across the inner mitochondrial 

membrane via uncoupling proteins that allow protons to flow against the proton gradient [226, 

231].  

Excess oxygen consumption, controlled mitochondrial proton leak and resulting ROS 

production can result in inappropriate damage to mitochondrial membrane lipids [228, 232], such 

as the very ROS/RNS-sensitive inner mitochondrial phospholipid cardiolipin [232].  Oxidative 

damage of inner mitochondrial membrane cardiolipin and other membrane phospholipids can 

result in increased proton and ion leakage across the inner membrane and partial loss of the 

electrochemical gradient.  Cardiolipin is an important component of the electron transport chain, 

providing stability for the cytochrome/enzyme complexes in the inner mitochondrial membrane 

[232, 233]. If damaged by ROS/RNS, oxidized cardiolipin results in loss of electron transport 

function [233]. 

Antioxidant defenses usually maintain ROS/RNS levels at concentrations that do not result 

in oxidation of cellular molecules or stimulate adverse events like carcinogenesis [234, 235].  

Endogenous cellular antioxidant defenses are essentual for protecting cellular molecules from 

oxidative damage and are mediated by proteins, such as glutathione peroxidase, catalase and 

superoxide dismutase, among others [236, 237].  There are also low molecular weight dietary 

antioxidants that can modify anti-oxidant oxidant balance [238-240].  Some of these dietary 

antioxidants have been used as natural preventive agents to shift the excess concentrations of 
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oxidative molecules down to physiological levels that can be maintained by endogenous cellular 

antioxidant systems [241]. 

 

Supplements for Fatigue and and Mitochondrial Dysfunction 

Although mild fatigue can be related to psychological disturbances, moderate to severe fatigue is 

almost always related to loss of mitochondrial function and diminished production of ATP [211, 

212]. A number of natural supplements have been used to treat non-psychological fatigue and 

mitochondrial dysfunction [6, 242-244].  These include supplements containing vitamins, 

minerals, antioxidants, metabolites, enzyme inhibitors and cofactors, mitochondrial transporters, 

herbs and membrane phospholipids (Table 1) [6, 243].  Although several natural supplements 

have been used to reduce fatigue and improve mitochondrial function, few are considered 

effective [245].  Among the most useful supplements are the following: 

 

Table 1. Relative Incidence of Some Infectious Agents in Patients with Chronic Disease* 

______________________________________________________________ 

 

   ALS MS AD PD ASD CSF FM 

______________________________________________________________ 
Borrelia spp  ++ ++ ++ + ++ ++ ++ 

Chlamyda spp.  + ++++ +++ ++ ++ ++ ++ 

Mycoplasma spp.  +++++ +++ ++ ++ +++++ +++++ +++++ 

Brucella spp.  +    +++ ++ ++ 

Cytomegalovirus   ++ +  ++ + + 

HSV -1   + +++ +++  ++ 

HSV-2    +   + 

HHV-6   ++ +++ ++  +++ +++ +++ 

Heliobacter spp.    ++ +++ + + + 

Other virus/bacteria +++ +++ ++ ++ + ++ ++ +++ 

_____________________________________________________________ 

 
*Abbreviations: AD, Alzheimer’s disease; ALS, amyotrophic lateral sclerosis;  

ASD, autism spectrum disorders; CFS, chronic fatigue syndrome; FM, fibromyalgia; 

HSV, herpes simplex virus; HHV, human herpes virus; MS, multiple sclerosis; 

PD, Parkinson’s disease 

Incidence (above controls): -, 0-1%; +, 1-5%; ++, 6-15%; +++, 16-25%; ++++, 26-50%; +++++, 51-90% 

 

L-Carnitine (LC) 

LC (3-hydroxy-4--trimethylaminobutyrate) is a naturally occurring fatty acid transporter found 

in all species of mammals that is directly involved in the transport of fatty acids into the 

mitochondrial matrix for subsequent -oxidation [246, 247].  It also functions in the removal of 

excess fatty acyl groups from the body and in the modulation of intracellular Coenzyme A (CoA) 

homeostatasis [246, 247].   Due to its importance in fatty acid oxidation and CoA and acyl-CoA 

homeostatasis, LC is usually maintained within relatively narrow concentration limits.  It is an 

important dietary supplement for maintaining optimal LC concentration within cells [246].   

Thus LC deficiency disorders are associated with reduced mitochondrial function, insulin 

resistance and coronary artery disease [248, 249]. 
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The importance of LC in mitochondrial health has spurred the use of LC supplements to 

potentially improve mitochondrial function and physical performance [250]. The justification is 

that increased reliance on fat as the principle substrate for energy production during extreme 

exercise should reduce the need for carbohydrates and delay the depletion of carbohydrate stores. 

This should increase overall energy production and reduce exercise-induced fatigue. Increased 

reliance on lipids requires increased levels of LC to transport fatty acids into mitochondria.  

However, increasing intake of oral LC, even for a few weeks prior to extreme exercise, did not 

increase skeletal muscle carnitine content, and therefore it is unlikely that increasing LC 

supplementation alters muscle metabolism during extreme exercise [251]. 

LC supplementation has been used in disorders that are characterized by low LC 

concentrations or impaired fatty acid oxidation, such as diabetes, sepsis, renal disease and 

cardiomyopathy [252].  For example, in patients with congestive heart failure propionyl-LC 

supplementation resulted in increased peak heart rate (increased mean by 12%), exercise 

capacity (increased mean by 21%) and peak oxygen consumption (increased mean by 45%) in 

the treatment group [253]. 

Since the rate of mitochondrial oxidative phosphorylation naturally declines with age an 

important anti-aging use of LC has been to increase the rate of mitochondrial oxidative 

phosphorylation in aged populations. Feeding old rats acetyl-LC was found to reverse age-

related decreases in LC levels while increasing fatty acid metabolism.  It also reversed the age-

related decline in cellular glutathione levels and improved muscle mitochondrial complex IV 

activity [251]. 

Dietary supplementation with LC and its various derivatives (up to 2 g per day)
 
is a safe and 

potentially useful method to increase mitochondrial function [254].  Multiple clinical trials 

demonstrating its effectiveness in age-related chronic illnesses other than diabetes and 

cardiovascular diseases have not been conducted.  One exception was a randomized, controlled 

clinical trial on 70 elderly subjects who were treated with LC for 6 months.  At the beginning of 

the trial the aged subjects were generally found to have muscle weakness, decreasing mental 

health, impaired mobility and poor endurance.  By the end of the study the treated group showed 

significant improvements in physical fatigue, mental fatigue and fatigue severity.  They also 

displayed reductions in total fat mass, increased muscle mass and an increased capacity for 

physical and cognitive activity through reduced fatigue and improved cognitive function [255].  

Other clinical trials on alcoholism, hepatic encephalopathy, coronary heart diseases, Peyronie’s 

disease, cerebral ischemia and infertility indicate that supplementation with LC can have positive 

effects (reviewed in [254]). 

 

Alpha-Lipoic Acid  (ALA) 

ALA (1,2-dithiolane-3-pentanoic acid) is a potent antioxidant, transition metal ion chelator, 

redox transcription regulator and anti-inflammatory agent [257].  ALA acts as a critical cofactor 

-ketoacid dehydrogenases, and it is important molecule in mitochondrial 

oxidative decarboxylation [257, 258].  Clinically ALA has been used as an oral supplement in 

the treatment of complications associated with diabetes mellitus, and it has been shown to bring 

about improvements in various diabetic-associated neuropathies, inflammation and vascular 
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health [245]. These effects have been attributed mainly to ALA having signal transduction 

effects on gene regulation and glucose uptake and metabolism [259]. 

During aging and in many chronic diseases certain sphingolipids, especially ceramides and 

in particular short-chain ceramides, accumulate in mitochondria due to hydrolysis of 

sphingomyelin by sphingomyelinase.  Eventually this retards electron transport activity [260, 

261].  Ceramide accumulation in mitochondria is especially damaging in cardiac tissue, so in 

eramide levels in the vascular endothelial cells of 

cardiac muscle by inhibiting sphingomyelinase activity.  This resulted in restoration of 

mitochondrial glutathione levels and increasing electron transport function [262]. 

As previously discussed, in diabetes ALA has been used to reduce diabetic complications, 

such as sensorimotor polyneuropathies [263].   A blinded study demonstrated its clinical utility 

-Lipoic acid (but not nerve 

conduction attributes) [264]. The long-term use of ALA has proven to be safe in diabetic patients 

[264]. 

Given as an oral supplement ALA is rarely present in tissues above micromolar levels; 

therefore, it is unlikely to be an important cellular antioxidant [258].  However, an important 

property of ALA is its ability to increase cellular glutathione levels by regulating glutathione 

synthesis and thus indirectly reducing oxidative stress [252].  ALA can also modify the 

regulation of nuclear transcription factor NF-

transcriptional effects, resulting in the reduction of free radical and cytotoxic cytokine 

production [265].   As a transition metal chelater ALA can remove excess copper, iron and other 

metals that are involved in chronic diseases, such as hemochromatosis, end-stage renal failure, 

AD and PD, and it is a potential therapeutic agent to prevent or mitigate heavy metal poisoning 

[256]. 

ALA has been shown to improve cognitive function along with mitochondrial function, 

suggesting a link between oxidative damage to mitochondria and congnition [266].  ALA has not 

been used in clinical trials on chronic fatigue, but its widespread use as a safe supplement (at 

doses of 200-600 mg/day)
 
to support mitochondrial function and reduce oxidative stress has 

justified its incorporation into various anti-aging and mitochondrial support supplements [264, 

265]. 

 

Coenzyme Q10 (CoQ10) 

Ubiquinone or CoQ10 is a key mitochondrial cofactor and component of the mitochondrial 

electron transport chain and one of the most widely used natural supplements [243, 267].  It is 

also a strong antioxidant in its reduced form, and it can modify the expression of certain genes 

involved in cell signaling, metabolism and transport [267, 268].  The most important role of 

CoQ10 is its involvement in the transfer of electrons along the multiple complexes of the 

mitochondrial electron transport chain [267, 269].  It has been used in doses up to 1,200 mg per 

day, but most studies used lower doses [267]. 

CoQ10 is an essential component of the mitochondrial oxidative phosphorylation system, 

thus its supplementation in patients with reduced CoQ10 levels should result in increased 

mitochondrial energy production and reduced fatigue [267, 269].  A systematic review of the 

literature on the effects of CoQ10 on adaptive physical exercise, hypertension and heart failure 
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revealed that most published studies showed modest improvements in exercise capacity in the 

subjects given oral CoQ10 [270].  In addition, in eight publications on the effects of CoQ10 on 

hypertension there was a mean decrease in systolic (-16 mm Hg) and diastolic (-10 mm Hg) 

blood pressure.  In nine randomized trials on the use of CoQ10 in heart failure patients there 

were non-significant trends towards increased injection fraction and reduced mortality [270].  

Rosenfeldt et al.
 
performed their own three-month randomized, placebo-controlled trial on the 

effects of oral CoQ10 in patients with heart failure [270].  They found that in the test arm but not 

in the control arm patients showed significant improvements in symptoms and a trend towards 

improvements in mean exercise times [270]. 

As mentioned above, the anti-fatigue effects of oral CoQ10 during physical exercise have 

been examined in a blinded, cross-over trial [271].   Healthy subjects received CoQ10 or placebo 

for eight days, and their performance was evaluated at fixed workloads on a bicycle ergometer 

twice for two hr with a four hr rest in-between [271]. The subjects on CoQ10 were able to 

achieve higher work outputs, they reported less fatigue, and their need for a recovery period was 

alleviated compared to the placebo group [271].  This study indicated that CoQ10 is a useful 

supplement to improve fatigue and performance. 

In patients with various diagnoses, such as neurodegenerative disease, CoQ10 has been used 

to reduce symptoms and delay progression [267, 269].  In AD models CoQ10 administration 

significantly delayed brain atrophy and typical -amyloid plaque formation [272, 273].  In a 

randomized, placebo-controlled clinical trial on Alzheimer’s patients that took an oral mixture of 

CoQ10, vitamins C and E and ALA in the test arm showed significant reductions in oxidative 

stress markers but failed to show significant changes in cerebrospinal fluid markers related to -

amyloid or tau pathology [273].  PD patients generally show increased oxidized-to-total CoQ10 

ratios as well as significant increases in markers of oxidative damage in the cerebrospinal fluid, 

but this can be partially reversed with CoQ10 supplementation [274]. In patients with early 

Huntington’s disease CoQ10 administration for 30 months slowed the usual decline in total 

functional capacity, but these differences did not reach statistical significance [275].  In contrast, 

in a multi-center placebo-controlled phase II trial with amyotrophic lateral sclerosis patients 

CoQ10 did not significantly modify functional decline over a nine-month period [276],
 
and in 

genetic-based mitochondrial diseases CoQ10 plus several vitamins was shown to be ineffective 

[277].  
 

Reduced Nicotinamide Adenine Dinucleotide (NADH) 

NADH is a cellular redox cofactor in over 200 redox reactions and serves as substrate for certain 

enzymes [278, 279].   Cells have a universal requirement for NADH, and its deficiency results in 

a condition called pellagra, which is characterized by dermatitis, diarrhea, dementia and 

eventually leads to death [279].  In the mitochondria NADH delivers electrons from lipid and 

other metabolite hydrolysis to the electron transport chain, but in its reduced form NADH can 

also act as a strong antioxidant [278, 279].   

Historically dietary NADH supplementation has been via NADH precursors, such as niacin, 

nicotinic acid or nicotinamide, but recently microcarriers have been used to stabilize oral NADH 

so that it can be directly absorbed in the gastrointestinal tract.  This turns out to be more effective 
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than using large oral doses of uncomplexed NADH, which are prone to oxidation and 

degradation and are generally considered ineffective [280]. 

In many chronic diseases oxidative damage is extensive, and various mitochondrial 

antioxidants have been used to treat disease and delay progression [4-6, 243, 281-284].  Nowhere 

has this been more apparent than in neurodegenerative diseases [4, 5, 84, 86, 134, 239].  For 

example, in AD stabilized oral NADH has been used to improve cognitive functioning and 

dementia [278]; however, in another clinical trial there was no evidence of improvements in 

cognition or dementia using oral NADH [280].  In a controlled clinical trial AD patients were 

given stabilized NADH or placebo for six months, and it was found that the test group had 

significantly better performance scores than the placebo group (verbal fluency, visual 

construction and a trend toward increased performance on abstract verbal reasoning) [285].  

However, there was no evidence of better performance using other measures (attention, memory) 

or on scores of dementia severity [285].   

Stabilized oral NADH has also been used to reduce the symptoms of PD.  In a preliminary 

open label clinical trial the effects of IV and oral NADH in over 800 Parkinson disease patients 

19.3% of patients showed 30-50% improvement in disability, 58.8% had moderate (10-30%) 

improvement, and 21.8% did not respond to the therapy (p<0.01) [286].  Younger patients with a 

shorter duration of disease responded better and showed more significant improvements than 

older patients and patients with a longer duration of disease.  The oral form was found to 

comparable to IV NADH in its effects [286].  However, when this type of trial was repeated 

statistically significant improvements in PD Rating scores were not found in patients treated with 

NADH, and diferences were also not found in CSF clinical markers associated with PD severity 

[287]. 

Oral NADH has also been used in a stabilized form to reduce symptoms in patients with 

chronic fatigue.  One such study on CFS patients used stabilized, oral NADH or placebo for four 

weeks in a cross-over trial [288].  Eight of 26 patients (30.7%) responded positively to the 

microencapsulated NADH compared with 2 of 26 (8%) in the placebo arm (p<0.05) [288].  

There was clearly an effect but only in a subset of patients in the trial.  These results were not 

considered significant by Colquhoun and Senn [289].  A comparison of oral, stabilized NADH to 

psychological/nutritional therapy in 31 chronic fatigue syndrome patients revealed that stabilized 

NADH alone reduced fatigue in the first 4 months of a 12-month trial.  After the first 4 months, 

however, symptom scores were similar in the NADH and the psychological/nutritional arms of 

the trial [290].  In another study stabilized NADH was given orally for two months to treat CFS 

patients with extensive fatigue [291].  Alegre et al. found in decreases in anxiety and maximum 

heart rate after a stress test, but there were little or no differences found in the functional impact 

of fatigue, quality of life, sleep quality, exercise capacity, or functional reserve [291].  The 

stabilized NADH alone has shown mixed results in various diseases and disorders, and not every 

patient responded to the oral, stabilized supplement [6]. 

 

Lipid Replacement Theapy (LRT) 

The dietary replacement of cellular membrane phospholipids (LRT) using food-derived 

glyerolphosholipids to remove damaged, mainly oxidized, membrane lipids in mitochondria and 

other cellular organelles has proved very effective at increasing mitochondrial function and 
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reducing fatigue [6, 7, 212, 244].
   

To some degree antioxidant supplements can reduce 

ROS/RNS levels and prevent some mitochondrial membrane phospholipid oxidation, but 

antioxidants alone cannot repair the damage already done to cells, and in particular, to their 

mitochondrial inner membranes [7, 244].
 

The use of oral membrane phospholipids plus antioxidants in doses ranging from 500-2,000 

mg per day has been effective in the treatment of various clinical conditions, such as CFS and 

other fatiguing illnesses (Table 2) [6, 7, 136, 212, 292, 293].
 
  LRT results in the actual 

replacement of damaged membrane phospholipids with undamaged (unoxidized) lipids to ensure 

proper function of cellular and especially mitochondrial membranes.  In these studies fatigue was 

monitored by use of the Piper Fatigue Scale (PFS) to measure clinical fatigue and quality of life 

[294].   

 

Table 2. A partial list of ingredients/agents or supplements that have been used  

or suggested to treat mitochondrial dysfuction
1
  

 

Category  Examples 

__________________________________________________ 

 

Vitamins  Vitamins C, D and E, Thiamine, Riboflavin 

Minerals  Magnesium, Calcium, Phosphate 

Lipids  Membrane Phospholipids, Unsaturated Fatty Acids 

Metabolites  Creatine, Pyruvate 

Cofactors  CoQ10,Lipoic acid, NADH, nicotinic acid 

Transporters L-Carnitine, Membrane Phospholipids 

Antioxidants CoQ10, -Lipoic acid, NADH, Glutathione 

Enzyme inhibitors -Lipoic acid, Dichloroacetate 

Herbs  Curcimin, Schisandrin 

_________________________________________________________ 
1 
Modified from Kerr [243] and Nicolson [6] 

 

In a subsequent cross-over study the effects of LRT on fatigue and mitochondrial function 

were monitored in patients with moderate to severe chronic fatigue [212]. There was good 

correspondence between reductions in fatigue and gains in mitochondrial function.  After 8 

weeks of LRT with NTFactor, mitochondrial function was significantly improved, and after 12 

weeks of NTFactor supplementation, fatigue was decreased by 35.5% (p<0.001), and 

mitochondrial function was found to be similar to that found in young healthy adults (26.8% 

increase, p<0.0001) [212]. After 12 weeks of supplement use, subjects were placed on placebo 

for an additional 12 weeks, and their fatigue and mitochondrial function were again measured.  

After the placebo period, fatigue and mitochondrial function were intermediate between the 

initial values and those found after 8 or 12 weeks on the supplement, indicating that continued 

supplementation is required to show improvements in mitochondrial function and maintain lower 

fatigue scores [212].   

Similar findings on fatigue reduction were observed in chronic fatigue syndrome and 

fibromyalgia syndrome patients given oral membrane phospholipids (NT Factor) [293]. Using a 
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new formulation of NT Factor plus vitamins, minerals and other supplements in patients with 

moderate chronic fatigue resulted in a 36.8% reduction in fatigue within one week [295]. 

 

Vitamins and Minerals 

Vitamins, minerals and other small molecules fall into the category of micronutrients.  They are 

essential in the support of mitochondrial function by providing antioxidants, cofactors, metal 

ions, salts, and other molecules that are essential in supporting the functions of mitochondrial 

enzymes, electron transport systems, mtDNA replication, fat and sugar metabolism, protein 

synthesis and proper antioxidant balance [296-298].  Vitamins, such as B (multiple), D, E, C, and 

ions, such as iron, magnesium, manganese, zinc, among other small molecules, are important n 

this regard, and up to one-half of the aging North American population is deficient in these 

vitamins, minerals and other micronutrients [299]. 

The use of micronutrients in helping to restore and/or maintain mitochondrial function has 

proven useful in consert with other treatment modialties [296, 298, 300].  Although there are few 

clinical trials in the literature that demonstrate the usefulness and utility of supplementation with 

only vitamins, minerals, antioxidants and other micronutrients alone in supporting mitochondrial 

function, the ones that have been conducted clearly show the importance of providing adequate 

oral doses of vitamins, minerals, antioxidants and other micronutrients to maintain mitochondrial 

energy functions [296. 300-302].  However, their sole use in the treatment of mitochondrial 

diseases has proved disappointing [277].  But it is reassuring to find that many commercial 

mitochondrial supplements contain adequate amounts of these important molecules (for example 

[282, 292, 295, 302]).  Thus in addition to vitamins, minerals, antioxidants and other 

micronutrients, other supplement components are likely required for significant and lasting 

effects on mitochondrial function.  

 

Combination Supplements to Restore Mitochondrial Function 

Oral supplements containing membrane phospholipids (NTFactor, 2,000 mg/day), CoQ10 (35 

mg/day), microencapsulated NADH (35 mg/day), LC (160 mg/day), -ketoglutaric acid (180 

mg/day) and other micronutrients have been combined into a dietary supplement (ATP Fuel
®

) to 

treat fatigue and mitochondrial dysfunction [303]. This formulation was used in a study to treat 

long-term intractable fatigue in patients with a variety of diagnoses during a two-month trial.  

The 58 participants in the ATP Fuel trial had moderate to severe intractable fatigue for an 

average  >17 years and had been to an average of >15 practitioners without resolution of their 

fatigue.  The study included 30 patients with chronic fatigue syndrome, 17 with chronic Lyme 

disease; 16 with other fatiguing illnesses, including fibromyalgia syndrome and Gulf War illness; 

4 with autoimmune disease, including rheumatoid arthritis; 2 cancer; and 2 diabetes.   These 

patients had tried unsuccessfully many drugs and supplements (average >35) to reduce their 

fatigue without success [303]. 

Participants in the trial included chronic illness patients who took the combination LRT 

supplement (ATP Fuel
®
) for 8 weeks, and their fatigue was scored monthly [303].  The Piper 

Fatigue Score (PFS) is a validated instrument that measures four dimensions of subjective 

fatigue: behavioral/severity, affective/ meaning, sensory, and cognitive/mood [294]. These were 

used to calculate the four subscale/dimensional scores and the total fatigue scores.
 
 In this study 
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the long-term chronic illness patients with intractable fatigue had initial PFS mean total fatigue 

scores of 7.51 ± 0.29, and after 8 weeks of supplement the mean scores improved to 5.21 ± 0.28, 

or a 30.7% reduction in fatigue (p<0.0001) [303].   

 

Table 3.  Effects of Dietary LRT Supplement NTFactor
®
 on Piper Fatigue Scores.

1
 

______________________________________________________________________________ 

      Av      Time  Piper Fatigue Score
2
 

Subjects/patients  n  age on LRT Fatigue Reduction (%)    Reference 

______________________________________________________________________________ 

 

Chronic fatigue
3
  34 50.3   8 wks  40.5**             Ellithorpe et al. [319] 

 

Aging, chronic fatigue
4
 20 68.9 12 wks  35.5*          Agadjanyan et al. [212] 

  

CFS (and/or FM)
3
  15 44.8   8 wks  43.1*   Nicolson & Ellithorpe [293] 

 

Obesity, fatigue
5
  35 42  8 wks  24*             Ellithorpe et al. [318] 

 

Aging, chronic fatigue
6
 67 57.3   1 wk  36.8*    Nicolson et al. [295]  

 

CFS, others
7
   58 55.0   8 wk  30.7*    Nicolson et al. [302] 

______________________________________________________________________________ 

 
1
Modified from Nicolson and Settineri [7] 

2
From Piper et al. [294] 

3
Propax

TM
 with NT Factor

®
 

4
NT Factor

®
 

5
Healthy Curb

TM
 with NT Factor

®
 

6
Advanced Physician’s Formula

TM
 with NT Factor

® 

7 
ATP Fuel

®
 with NTFactor

®
, CoQ10, NADH, LC, -keto glutaric acid 

**P<0.0001,  *P<0.001 compared to without NT Factor
®

 

______________________________________________________________________________ 

 

The PFS fatigue scores can be further dissected into four subcategories: (i) 

Behavior/Severity subcategory, which deals with completing tasks, socializing, engaging in 

sexual activity and other activities, and intensity or degree of fatigue; (ii) Affective/Meaning 

subcategory, which determines whether the fatigue/tiredness is pleasant/unpleasant, whether the 

patient is agreeable/disagreeable, protective/destructive, or feels normal/abnormal; (iii) Sensory 

subcategory, which determines whether the patient is strong/weak, awake/sleepy, refreshed/tired, 

or energetic/unenergetic; and 
 
(iv)

 
Cognitive/Mood subcategory, which assesses whether a patient 

feels relaxed/tense, exhilarated/depressed, able/unable to concentrate, remember, and think 

clearly) [294].  All of these fatigue subcategories showed significant reductions by the end of the 

8-week trial (p<0.0001).  For example, there was a 30.7% reduction (p<0.0001) in 

severity/behavior of fatigue, indicating that there was a significant reduction in the intensity of 

fatigue, and a significant increase in the ability to complete tasks, socialize, and engage in sexual 
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and other activities.  Also, there was also a 28.0% improvement (p<0.0001) in mood and 

cognitive ability, such as the ability to concentrate, remember, and think clearly [303]. 

The benefits of combining various natural mitochondrial support components into 

combination mitochondrial supplements should be obvious.  Separate supplements are no longer 

required, and the individual components can be adjusted in dosage to provide maximal 

effectiveness.  Also, with combined supplements patients who often have memory and other 

defects are more likely to be compliant than with the requirement of taking several separate 

supplements on a daily basis.  New formulations can be designed to replace damaged 

mitochondrial components and also address particular protective needs, such as preconditioning 

to defend against oxidative stress, damage to ion channels and other needs [304].
 

 

Final Comments 

There is ample evidence that intracellular infections are linked to mitochondria and 

mitochondrial dysfunction.  Mitochondria play essential roles in cellular homeostasis through 

control of cell death and as sentinels of cellular danger, such as oxidative stress, loss of essential 

growth and maintenance factors, physical damage and infection by foreign agents [305-307].  

They also orchestrate cellular adaptive danger responses to sustain cell survival, especially when 

infections threaten cellular systems [307, 308].  However, microorganisms have evolved with 

different strategies to evade or circumvent host mechanisms to identify, neutralize and degrade 

them [308-310]. 

During infection and cellular invasion by microorganisms coordination of multiple innate 

immune signaling pathways occurs through different pathogen-associated molecular pattern 

recognition receptors.  The recognition of foreign invaders (and other danger molecules) by these 

innate receptors (Patern Recognition Receptors) can initiate an intracellular signaling cascade 

that results in activation of anti-microbial mechanisms to clear the infection [311, 312].  

Mitochondria have emerged as critical regulators of innate immune responses to invading 

pathogens as well as other stressors [311-313].  They initiate immune signaling modulators that 

are tightly linked to mitochondrial energetics through intracellular danger-sensing multiprotein 

platforms called inflammasomes [12, 313, 314].  Thus mitochondria operate as fundamental 

―hubs‖ in the pathways from detection of intracellular pathogens to adaptive responses that 

attempt to neutralize and eliminate pathogens as well as housing crucial signal transducers and 

providing a structural scaffold that is involved in regulating anti-microbial activities [305, 306].  

They also warn the host with danger signals by providing multiple mitochondrial damage 

products (DAMPS) that are recognized by the innate immune system, resulting in the stimulation 

of local or systemic immune responses [315]. 

Mitochondria are addionally implicated in pathways that result in the cellular destruction of 

pathogens by autophagy through specialized autophagosomes [304, 307]. When pathogens 

damage cells beyond their ability to be repaired, mitochondria are also involved in initiating and 

removing the damaged cells by apoptosis [304, 316].  They not only modulate apoptosis 

triggered by terminal alternations in intracellular homeostasis, but they can also participate in 

apoptosis stimulated by responses to extracellular or external signals  [317, 318].  Thus 

mitochondria are intrinsically tied to cellular infections in a number of ways.  
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Oral mitochondrial supplements containing various mitochondrial substrates, cofactors, 

precursors, components and modulators have proven useful in maintaining and improving 

mitochondrial function in various chronic diseases.  In some examples cited in here this has 

resulted in reduction of specific illness signs and symptoms, improvements in quality of life and 

assistance in over-all recovery.  Future efforts to refine and improve oral mitochondrial 

supplements and apply them clinically should enhance our abilities to treat and care for chronic 

illness patients as well as improve quality of life for aging populations. 
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